Skip to main content

Advertisement

Log in

Synthesis of \(\hbox {Ag}_{2}\hbox {Se}\)–graphene–\(\hbox {TiO}_{2} \) nanocomposite and analysis of photocatalytic activity of \(\hbox {CO}_{2}\) reduction to \(\hbox {CH}_{3}\hbox {OH}\)

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The present work deals with the development of a new ternary composite, \(\hbox {Ag}_{2}\hbox {Se}\)\(\hbox {G}\)\(\hbox {TiO}_{2}\), using ultrasonic techniques as well as X-ray diffraction (XRD), scanning electron microscopy (SEM), high transmission electron microscopy (HTEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and UV–Vis diffuse reflectance spectra (DRS) analyses. The photocatalytic potential of nanocomposites is examined for \(\hbox {CO}_{2}\) reduction to methanol under ultraviolet (UV) and visible light irradiation. \(\hbox {Ag}_{2}\hbox {Se}\)\(\hbox {TiO}_{2}\) with an optimum loading graphene of 10 wt% exhibited the maximum photoactivity, obtaining a total \(\hbox {CH}_{3}\hbox {OH}\) yield of 3.52 \(\upmu \hbox {mol}\,\hbox {g}^{-1}\,\hbox {h}^{-1}\) after 48 h. This outstanding photoreduction activity is due to the positive synergistic relation between \(\hbox {Ag}_{2}\hbox {Se}\) and graphene components in our heterogeneous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roy S C, Varghese O K, Paulose M and Grimes C A 2010 ACS Nano. 4 1259

    Article  Google Scholar 

  2. Khatib H 2012 Energ. Policy 48 737

    Article  Google Scholar 

  3. Windle C D and Perutz R N 2012 Coordin. Chem. Rev. 256 2562

    Google Scholar 

  4. Qu Y and Duan X 2012 J. Mater. Chem. 22 16171

    Article  Google Scholar 

  5. Hurst T F, Cockerill T T and Florin N H 2012 Energ. Environ. Sci.  5 7132

    Google Scholar 

  6. Yu J, Low J, Xiao W, Zhou and Jaroniec M 2014 J. Am. Chem. Soc. 136 8839

  7. Chen Y, Wang C, Sun P, Yang P, Du L and Mai W 2017 Mater. Chem. A: Fuel  37 40

  8. Xiang Q, Cheng B and Yu J 2015 Angewandte Chemie Int. Ed. 54 11350

    Article  Google Scholar 

  9. Kondratenko E V, Mul G, Baltrusaitis J, Larrazábal G O and Pérez-Ramírez 2013 J. Energ. Environ. Sci. 6 3112

  10. Yuan L and Xu Y-J 2015 Appl. Surf. Sci. 342 154

    Article  Google Scholar 

  11. Morris A J, Meyer G J and Fujita E 2009 Acc. Chem. Res. 42 1983

    Article  Google Scholar 

  12. Habisreutinger S N, Schmidt-Mende L and Stolarczyk J K 2013 Angewandte Chemie Int. Ed. 52 7372

  13. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M and Ye J 2012 Adv. Mater. 24 229

    Article  Google Scholar 

  14. Mikkelsen M, Jørgensen M and Krebs F C 2010 Energ. Environ. Sci.  3 43

    Google Scholar 

  15. Zhang N, Ouyang S, Li P, Zhang Y, Xi G, Kako T and Ye J 2011 Chem. Commun. 47 2041

    Article  Google Scholar 

  16. Yan S C, Ouyang S X, Gao J, Yang M, Feng J Y, Fan X X et al 2010 Angewandte Chemie 122 6544

    Article  Google Scholar 

  17. Xu Y and Schoonen M A 2000 Am. Mineral. 85 543

    Article  Google Scholar 

  18. Tan L L, Chai S P and Mohamed A R 2012 Chem. Sus. Chem. 5 1868

    Article  Google Scholar 

  19. Nozik A 1975 Nature 257 383

    Article  Google Scholar 

  20. Fujishima A and Honda K 1972 Nature 238 37

    Article  Google Scholar 

  21. Nasution H W, Purnama E, Kosela S and Gunlazuardi 2005 J. Catal. Commun. 6 313

  22. Murakami N, Saruwatari D, Tsubota T and Ohno T 2013 Curr. Org. Chem.  17 2449

    Article  Google Scholar 

  23. Ishitani O, Inoue C, Suzuki Y and Ibusuki T 1993 J. Photochem. Photobiol. A: Chem.  72 269

    Article  Google Scholar 

  24. Sahu M and Biswas P 2011 Nanoscale Res. Lett. 6 1

    Google Scholar 

  25. Hummers Jr W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    Article  Google Scholar 

  26. Marcano D, Kosynkin D, Berlin J, Sinitskii A, Sun Z, Slesarev A et al 2010 ACS Nano. 4 4806

  27. Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D et al 2010 ACS Nano. 4 6425

    Article  Google Scholar 

  28. Naether C, Scherb S and Bensch W 2003 Acta Crystallogr. Sec. E: Struc. Rep. Online 59 280

    Article  Google Scholar 

  29. Das V D and Karunakaran D 1989 Phys. Rev. B 39 10872

    Article  Google Scholar 

  30. Kobayashi M 1990 Solid State Ionics 39 121

    Article  Google Scholar 

  31. Cui Y, Chen G, Ren J, Shao M, Xie Y and Qian Y 2003 J. Solid State Chem. 172 17

  32. Zhao J, Jiang B, Zhang S, Niu H, Jin B and Tian Y 2009 Sci. China Ser. B: Chem. 52 2213

    Article  Google Scholar 

  33. Cao H, Xiao Y, Lu Y, Yin J, Li B, Wu S and Wu X 2010 Nano Res. 3 863

    Article  Google Scholar 

  34. Ullah K, Ali A, Ye S, Zhu L and Oh W-C 2015 Sci. Adv. Mater. 7 606

    Article  Google Scholar 

  35. Ali A and Oh W-C 2016 Nanotub. Carbon Nanostruc. 24 555

    Article  Google Scholar 

  36. Wang P-Q, Bai Y, Luo P-Y and Liu J-Y 2013 Catal. Commun. 38 82

    Article  Google Scholar 

  37. Zhai Q, Xie S, Fan W, Zhang Q, Wang Y, Deng W and Wang Y 2013 Angewandte Chemie 125 5888

    Article  Google Scholar 

  38. Zhan J, Yang J X, Li S, Wang D, Xie Y and Qian Y 2001 Int. J. Inorg. Mater. 3 47

    Article  Google Scholar 

  39. Zhang X-Y, Li H P, Cui X L and Lin Y 2010 J. Mater. Chem. 20 2801

    Article  Google Scholar 

  40. Zhang H, Lv X, Li Y, Wang Y and Li J 2009 ACS Nano. 4 380

    Article  Google Scholar 

  41. Perera S D, Mariano R G, Vu K, Nour N, Seitz O, Chabal Y et al 2012 ACS Catal. 2 949

    Article  Google Scholar 

  42. Pejova B 2014 J. Solid State Chem. 213 22

    Article  Google Scholar 

  43. Glazov V, Pashinkin A and Fedorov V 2000 Inorg. Mater. 36 641

    Article  Google Scholar 

  44. Toroker M C, Kanan D K, Alidoust N, Isseroff L Y, Liao P and Carter E A 2011 Phys. Chem. Chem. Phys. 13 16644

    Article  Google Scholar 

  45. Zhuang H L and Hennig R G 2013 J. Phys. Chem. C 117 20440

    Article  Google Scholar 

  46. Zhao L L, Gao Z-M, Liu H, Yang J, Qiao S-Z and Du X-W 2013 CrystEngComm. 15 1685

    Article  Google Scholar 

  47. Ghosh T, Lee J-H, Meng Z-D, Ullah K, Park C-Y, Nikam V and Oh W C 2013 Mater. Res. Bull. 48 1268

    Article  Google Scholar 

  48. Xiang Q, Yu J and Jaroniec M 2012 J. Am. Chem. Soc134 6575

    Article  Google Scholar 

  49. Mishra S, Du D, Jeanneau E, Dappozze F, Guillard C, Zhang J et al 2016 Chem.–Asian J. 11 1658

  50. Ge J P, Xu S, Liu L P and Li Y D 2006 Chemistry—Eur. J. 12 3672

    Article  Google Scholar 

  51. Deka S, Genovese A, Zhang Y, Miszta K, Bertoni G, Krahne R et al 2010 J. Am. Chem. Soc. 132 8912

    Article  Google Scholar 

  52. Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 Chem. Soc. Rev.  39 228

    Article  Google Scholar 

  53. Zhang L F and Zhang C Y 2014 Nanoscale 6 1782

    Article  Google Scholar 

  54. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D et al 2006 Chem. Mater. 18 2740

  55. Jeong H-K, Noh H-J, Kim J-Y, Jin M, Park C and Lee Y 2008 EPL (Europhys. Lett.)  82 67004

  56. Naumov P, Barkalov O, Mirhosseini H, Felser C and Medvedev S 2016 J. Phys.: Condens. Matter 28 385801

    Google Scholar 

  57. Hamlin J, Jeffries J R, Butch N, Syers P, Zocco D, Weir S et al 2011 J. Phys.: Condens. Matter 24 035602

  58. Azhniuk Y M, Dzhagan V, Raevskaya A, Stroyuk A, Kuchmiy S Y, Valakh M Y et al 2008 J. Phys. Condens. Matter 20 455203

  59. Lange H, Artemyev M, Woggon U and Thomsen C 2008 Nanotechnology 20 045705

    Article  Google Scholar 

  60. Ferrari A C 2007 Solid State Commun. 143 47

    Article  Google Scholar 

  61. Chen W C, Wen T C and Gopalan A 2002 Synth. Metals 128 179

    Article  Google Scholar 

  62. Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi (b) 15 627

  63. Zhang Y and Pan C 2011 J. Mat. Sci. 46 2622

    Article  Google Scholar 

  64. Lv T, Pan L, Liu X, Lu T, Zhu G, Sun Z et al 2012 Catal. Sci. Technol. 2 754

    Google Scholar 

  65. Zeng P, Zhang Q, Peng T and Zhang X 2011 Phys. Chem. Chem. Phys. 13 21496

    Article  Google Scholar 

  66. Baeissa E S 2014 Ceram. Inter. 40 12431

    Article  Google Scholar 

  67. Li X, Wen J, Low J, Fang Y and Yu J 2014 Sci. China Mater. 57 70

    Article  Google Scholar 

  68. Yang X, Xiao T and Edwards P P 2011 Int. J. Hydrogen Energ. 36 6546

    Article  Google Scholar 

  69. Nakata K and Fujishima A 2012 J. Photochem. Photobiol. C: Photochem. Rev. 13 169

    Article  Google Scholar 

  70. Linsebigler A L, Lu G and Yates J T 1995 Chem. Rev. 95 735

    Article  Google Scholar 

  71. Wu J C 2009 Catal. Surv. Asia 13 30

    Google Scholar 

  72. Tseng I-H and Wu J C-S 2004 Catal. Today 97 113

    Article  Google Scholar 

  73. Hsu H C, Shown I, Wei H-Y, Chang Y C, Du H Y, Lin Y G et al 2013 Nanoscale 5 262

    Article  Google Scholar 

  74. Sun M, Liu H, Liu Y, Qu J and Li J 2015 Nanoscale 7 1250

    Article  Google Scholar 

  75. Schneider J, Jia H, Muckerman J T and Fujita E 2012 Chem. Soc. Rev. 41 2036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Chun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Oh, WC. Synthesis of \(\hbox {Ag}_{2}\hbox {Se}\)–graphene–\(\hbox {TiO}_{2} \) nanocomposite and analysis of photocatalytic activity of \(\hbox {CO}_{2}\) reduction to \(\hbox {CH}_{3}\hbox {OH}\) . Bull Mater Sci 40, 1319–1328 (2017). https://doi.org/10.1007/s12034-017-1494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1494-x

Keywords

Navigation