Skip to main content

Advertisement

Log in

Preparation and characterization of Li2O–CaO–Al2O3–P2O5–SiO2 glasses as bioactive material

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The aim of the present investigation was to study the role of Al2O3 in the Li2O–CaO–P2O5–SiO2 bioactive glass for improving the bioactivity and other physico-mechanical properties of glass. A comparative study on structural and physico-mechanical properties and bioactivity of glasses were reported. The structural properties of glasses were investigated by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron microscopy and the bioactivity of the glasses was evaluated by in vitro test in simulated body fluid (SBF). Density, compressive strength, Vickers hardness and ultrasonic wave velocity of glass samples were measured to investigate physical and mechanical properties. Results indicated that partial molar replacement of Li2O by Al2O3 resulted in a significant increase in mechanical properties of glasses. In vitro studies of samples in SBF had shown that the pH of the solution increased after immersion of samples during the initial stage and then after reaching maxima it decreased with the increase in the immersion time. In vitro test in SBF indicated that the addition of Al2O3 up to 1.5 mol% resulted in an increase in bioactivity where as further addition of Al2O3 caused a decrease in bioactivity of the samples. The biocompatibility of these bioactive glass samples was studied using human osteoblast (MG-63) cell lines. The results obtained suggested that Li2O–CaO–Al2O3–P2O5–SiO2-based bioactive glasses containing alumina would be potential materials for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Hench L L 1991 J. Am. Ceram. Soc. 74 1487

    Article  Google Scholar 

  2. Bohner M and Lemaitre J 2009 Biomaterials 30 2175

    Article  Google Scholar 

  3. Clark A E and Hench L L 1976 J. Biomed. Mater. Res. 10 161

    Article  Google Scholar 

  4. Hench L L 2006 J. Mater. Sci. Mater. Med. 17 967

    Article  Google Scholar 

  5. Hench L L, Splinter R J, Allen W C and Greenlee T K 1971 J. Biomed. Mater. Res. Symp. 334 117

    Article  Google Scholar 

  6. Kokubo T 1991 Biomaterials 12 155

    Article  Google Scholar 

  7. LeGeros R Z 2002 Clin. Orthop. Relat. Res. 395 81

    Article  Google Scholar 

  8. Cao W and Hench L L 1996 Ceram. Int. 22 493

    Article  Google Scholar 

  9. Rahaman M N, Day D E, Bal B S, Fu Q, Jung S B and Bonewald L F 2011 Acta Biomater. 7 2355

    Article  Google Scholar 

  10. Jung S B, Day D E, Day T, Stoecker W and Taylor P 2011 Wound Repair Regen. 30 19

    Google Scholar 

  11. Abou Neel E A, Pickup D M, Valappil S P, Newport R J and Knowles J C 2009 J. Mater. Chem. 19 690

    Article  Google Scholar 

  12. Arstila H, Hupa L, Karlsson K H and Hupa M 2008 J. Non-Cryst. Solids 354 722

    Article  Google Scholar 

  13. Shirtliff V J and Hench L L 2003 J. Mater. Sci. 38 4697

    Article  Google Scholar 

  14. Li P, Zhang F and Kokubo T 1992 J. Mater. Sci.: Mater. Med. 3 452

    Google Scholar 

  15. Agathopoulos S, Tulaganov D U, Ventura J M G, Kannan S, Karakassides M A and Ferreira J M F 2006 Biomaterials 27 1832

    Article  Google Scholar 

  16. Marti A, Dr. Robert Mathys Foundation, Bischmattstr. 12, CH-2544 Bettlach Injury—Int. J. Care Injured 01/2000; 31. DOI:10. 1016/S0020-1383(00)80021-2

  17. El-Kheshen A, Khaliafa F A, Saad E A and Elwan R L 2008 Ceram. Int. 34 1667

    Article  Google Scholar 

  18. Sitarz M, Bulat K and Szumera M 2010 J. Non-Cryst. Solids 356 224

    Article  Google Scholar 

  19. Sitarz M 2010 Eur. J. Glass Sci. Tech. 51 179

    Google Scholar 

  20. Ohtsuki C, Kokubo T and Yamamuro T 1992 J. Mater. Sci.: Mater. Med. 3 119

    Google Scholar 

  21. Gross U and Strunz V 1985 J. Biomed. Mater. Res. 19 251

    Article  Google Scholar 

  22. Clement-Lacroix P, Morvan F, Roman-Roman S, Vayssiere B and Belleville C 2005 Proc. Natl. Acad. Sci. 102 17406

    Article  Google Scholar 

  23. Zamani A, Omrani R G and Nasab M M 2009 Bone 44 331

    Article  Google Scholar 

  24. Kokubo K, Ito S, Huang Z T, Hayashi T, Sakka S, Kitsugi T and Yamamuro T 1990 J. Biomed. Mater. Res. 24 721

    Article  Google Scholar 

  25. Kapusetti G, Misra N, Singh V, Srivastava S, Roy P, Dana K et al 2014, J. Mater. Chem. B. 2 3984

    Article  Google Scholar 

  26. Kapusetti G, Misra N, Singh V, Kushwaha R K and Maiti P 2012 J. Biomed. Mater. Res. A 100 3363

    Article  Google Scholar 

  27. Shannon R D 1976 Acta Crystallogr. Sect. A 32 751

    Article  Google Scholar 

  28. Scholes S R 1975 Modern Glass Practice (Boston, MA: Cahners Books) 7th ed., p 375

  29. Andersson O H and Sodergard A 1999 J. Non-Cryst. Solids 246 9

    Article  Google Scholar 

  30. Branda F, Costantini A, Luciani G and Laudisio G 2001 J. Ther. Analy. Calori. 64 1017

    Article  Google Scholar 

  31. Mirhadia B and Mehdikhanib B 2012 N. J. Glass Ceram. 2 1

    Article  Google Scholar 

  32. Vallet-Reg M, Roma J, Padilla S, Doadrio J C and Gil F J 2005 J. Mater. Chem. 15 1353

    Article  Google Scholar 

  33. Paul A 1990 Chemistry of Glasses (London: Chapman & Hall) 2nd ed., p 149–151

  34. Varshneya A K 2006 Fundamentals of Inorganic Glasses (Sheffield, UK: Society of Glass Technology) p 129, 515–17

  35. Paul A and Zaman M S 1978 J. Mater. Sci. 13 1499

    Article  Google Scholar 

  36. Teixeira Z, Alves O L and Mazali I O 2007 J. Am. Ceram. Soc. 90 256

    Article  Google Scholar 

  37. Filguei Ras M R, LaTorre G and Hench L L 1993 J. Biomed. Mater. Res. 27 1485

    Article  Google Scholar 

  38. Belkebir A, Rocha J, Esculcas A P, Berthet P, Gilbert B and Gabelica Z 1999 Spectrosc. Acta 55 1323

    Article  Google Scholar 

  39. Muller D, Berger G, Grunze I, Ludwig G, Hallas E and Haubenreisser U 1983 Phys. Chem. Glasses 24 37

    Google Scholar 

  40. Brow R K and Tallant D R 1997 J. Non-Cryst. Solids 222 396

    Article  Google Scholar 

  41. Greenspan D C and Hench L L 1976 J. Biomed. Mater. Res. 10 503

    Article  Google Scholar 

  42. Hayakawa S, Tsuru K, Ohtsuki C and Osaka A 1999 J. Am. Ceram. Soc. 82 2155

    Article  Google Scholar 

  43. Kasuga T, Hosoi Y, Nogami M and Niinomi M 2001 J. Am. Ceram. Soc. 84 45

    Google Scholar 

  44. Filgueitras M R, LaTorre G and Hench L L 1993 J. Biomed. Mater. Res. 27 1485

    Article  Google Scholar 

  45. Majhi M R, Pyare R and Singh S P 2012 J. Biomater. Tissue Eng. 2 1

    Article  Google Scholar 

  46. Majhi M R, Pyare R and Singh S P 2011 J. Biomim. Biomater. Tissue Eng. 11 45

    Article  Google Scholar 

  47. Majhi M R, Kumar R, Singh S P and Pyare R 2011 J. Biomim. Biomater. Tissue Eng. 12 1

    Article  Google Scholar 

  48. de Groot K, Wolke J G C and Jansen J A 1998 Proc. Int. Mech. Eng. 212 137

    Google Scholar 

  49. Vitale Brovarone C, Verne E and Appendino P 2006 J. Mater. Sci.: Mater. Med. 17 1069

    Google Scholar 

  50. Beherei H H, Mohamed K R and El-Bassyouni G T 2009 Ceram. Int. 35 1991

    Article  Google Scholar 

  51. Nakamura M, Mochizuki Y, Usami K, Itoh Y and Nozaki T 1984 Solid State Commun. 50 1079

    Article  Google Scholar 

  52. Kusabiraki K 1986 J. Non-Cryst. Solids 79 208

    Article  Google Scholar 

  53. Goh Y -F, Alshemary A Z, Akram M, Rafiq M Kadir A and Hussain R 2014 Ceram. Int. 40 729

    Article  Google Scholar 

  54. Cerruti M, Greenspan D and Powers K 2005 Biomaterials 26 1665

    Article  Google Scholar 

  55. Stoch A, Jastrzebski W, Brozek A, Trybalska B, Cichocinska M and Szarawara E 1999 J. Mol. Struct. 511–512 287

  56. ElBatal H A, Azooz M A, Khalil E M A, Soltan Monem A and Hamdy Y M 2003 Mater. Chem. Phys. 80 599

    Article  Google Scholar 

  57. Macon A L B, Kim T B, Valliant E M, Goetschius K, Brow R K, Day D E, Hoppe A, Boccaccini A R, Kim I Y, Ohtsuki C, Kokubo T, Osaka A, Vallet-Regı’ M, Arcos D, Fraile L, Salinas A J, Teixeira A V, Vueva Y, Almeida R M, Miola M, Vitale-Brovarone C, Verne E, Holand W and Jones J R 2015 J. Mater. Sci.: Mater. Med. 26 115

    Google Scholar 

  58. Kutbay I, Yilmaz B, Evis Z and Usta M 2014 Ceram. Int. 40 14817

    Article  Google Scholar 

  59. Elliot J C ed 1994 Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Amsterdam: Elsevier Science)

  60. Gisbon I R, Rehman I, Best S M and Bonfield W 2000 J. Mater. Sci. 12 799–804

    Google Scholar 

  61. Mohini G J, Krishnamacharyulu N, Baskaran G S, Rao P V and Veeraiah N 2013 Appl. Surf. Sci. 287 46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HIMANSHU TRIPATHI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TRIPATHI, H., KUMAR, A.S. & SINGH, S.P. Preparation and characterization of Li2O–CaO–Al2O3–P2O5–SiO2 glasses as bioactive material. Bull Mater Sci 39, 365–376 (2016). https://doi.org/10.1007/s12034-016-1154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1154-6

Keywords

Navigation