Skip to main content
Log in

Study of dielectric and ferroelectric properties of five-layer Aurivillius oxides: A2Bi4Ti5O18 (A = Ba, Pb and Sr) synthesized by solution combustion route

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents the ferroelectric and dielectric properties of five-layer Aurivillius oxides (Ba2Bi4Ti5O18, Pb2Bi4Ti5O18 and Sr2Bi4Ti5O18) prepared by a solution combustion route with glycine as a fuel at low calcination temperature. The phase formation of these materials with pseudo-tetragonal structure was achieved after calcination at 750°C for 3 h; as confirmed by X-ray diffraction studies. Scanning electron microscopy of the sintered ceramics shows that the grains exhibit a plate-like morphology. The ferroelectric to paraelectric transition temperature (T c) for Ba-, Pb- and Sr-based bismuth titanate ceramics was found to be 350, 280 and 260°C, respectively. All three materials show multiple relaxation phenomena and their electrical conductivity was found to be temperature dependent. The Pb2Bi4Ti5O18 ceramic possessed the highest value of activation energy (0.68 eV) and hence shows better ferroelectric properties, as compared to barium and strontium bismuth titanates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Irie H, Miyayama M and Kudo T 2000 J. Am. Ceram. Soc. 83 2699

    Article  Google Scholar 

  2. Cui L and Hu Y J 2009 Physica B 404 150

    Article  Google Scholar 

  3. Subohi O, Kumar G S, Malik M M and Kurchnia R 2014 Optik 125 820

    Article  Google Scholar 

  4. Jin S, Miranda Salvado I M and Costa M E V 2011 Mater. Res. Bull. 46 432

    Article  Google Scholar 

  5. Parida G and Bera J 2014 Ceram. Int. 40 14913

    Article  Google Scholar 

  6. Srinivas K and James A R 1999 J. Appl. Phys. 86 3885

    Article  Google Scholar 

  7. Zhang S T, Chen Y F, Sun H P, Pan X Q, Liu Z G and Ming N B 2002 Appl. Phys. Lett. 81 5009

    Article  Google Scholar 

  8. Srinivas K, Sarah P and Suryanarayana S V 2003 Bull. Mater. Sci. 26 247

    Article  Google Scholar 

  9. Subbarao E C 1962 J. Am. Ceram. Soc. 45 166

    Article  Google Scholar 

  10. Watanabe T and Funakubo H 2006 J. Appl. Phys. 100 51602–1

    Article  Google Scholar 

  11. Hou R Z and Chen X M 2005 J. Mater. Res. 20 2354

    Article  Google Scholar 

  12. James A R, Pignolet A, Senz S, Zakharov N D and Hesse D 2000 Solid State Commun. 114 249

    Article  Google Scholar 

  13. Du H, Shi X and Li H 2011 Bull. Mater. Sci. 34 1201

    Article  Google Scholar 

  14. Wang C M, Wang J F and Gai Z G 2007 Scripta Mater. 57 789

    Article  Google Scholar 

  15. Kumar S, Kundu S, Ochoa D A, Garcia J E and Varma K B R 2012 Mater. Chem. Phys. 136 680

    Article  Google Scholar 

  16. Nalini G and Guru Row T N 2002 Bull. Mater. Sci. 25 275

    Article  Google Scholar 

  17. Ismunandar and Kennedy B J 1999 J. Mater. Chem. 9 541

    Article  Google Scholar 

  18. Aurivillius B and Fang P H 1962 Phys. Rev. 126 893

    Article  Google Scholar 

  19. Irie H, Miyayama M and Kudo T 2001 J. Appl. Phys. 90 4089

    Article  Google Scholar 

  20. Fernandez J F, Caballero A C, Villegas M, de Frutos J and Lascano L 2002 Appl. Phys. Lett. 81 4811

    Article  Google Scholar 

  21. Xu Z, Chu R, Hao J, Zhang Y, Chen Q, Zhao L, Li G and Yin Q 2009 J. Alloys Compd. 487 585

    Article  Google Scholar 

  22. Zulhadjri, Prijamboedi B, Nugroho A A, Mufti N and Ismunandar 2011, ITB J. Sci. 43 A 139

    Article  Google Scholar 

  23. Wang L, Ding L -Y, Zhang S -T, Chen Y -F and Liu Z -G 2009, Solid State Commun. 149 2061

    Article  Google Scholar 

  24. Miyayama M and Yi I -S 2000, Ceram. Int. 26 529

    Article  Google Scholar 

  25. Chen Q, Xu Z, Chu R and Lui Y 2011 J. Adv. Dielectr. 1 439

    Article  Google Scholar 

  26. Qiang F, He J H, Zhu J and Chen X B 2006 J. Solid State Chem. 179 1768

    Article  Google Scholar 

  27. Ismunandar, Kamiyama T, Hoshikawa A, Zhou Q, Kennedy B J, Kubota Y and Kato K 2004 J. Solid State Chem. 177 4188

    Article  Google Scholar 

  28. Ferrer P, Iglesias J E, Ayala A P, Guedes I and Castro A 2005 Solid State Commun. 136 621

    Article  Google Scholar 

  29. Mukasyan A S and Dinka P 2007 Int. J. Self-Propag. High-Temp. Synth. 16 23

    Article  Google Scholar 

  30. Aruna S T and Mukasyan A S 2008 Curr. Opin. Solid State Mater. Sci. 12 44

    Article  Google Scholar 

  31. Shrivastava S, Subohi O and Malik M M 2013 Nano Hybrid 3 67

    Article  Google Scholar 

  32. Meng Y Y, He M H, Zeng Q, Jiao D L, Shukla S, Ramanujan R V and Liu Z W 2014 J. Alloys Compd. 583 220

    Article  Google Scholar 

  33. Kalaiselvi B J 2010 Int. J. Pure Appl. Phys. 6 207

    Google Scholar 

  34. Yadav K L and Choudhary R N P 1995 Bull. Pure Appl. Sci. D 14 23

    Google Scholar 

  35. Mamatha B, James A R and Sarah P 2010 Physica B 405 4772

    Article  Google Scholar 

  36. Lu W P, Mao X Y and Chem X B 2004 J. Appl. Phys. 95 1973

    Article  Google Scholar 

  37. Ferrer P, Alguero M, Iglesias J E and Castro A 2007 J. Eur. Ceram. Soc. 27 3641

    Article  Google Scholar 

  38. Prasad N V, Narendra Babu S, Siddeshwar A, Prasad G and Kumar G S 2009 Ceram. Int. 35 1057

    Article  Google Scholar 

  39. Kroger F A and Vink H J 1956 Solid State Phys. 3 307

    Google Scholar 

  40. Sarangi S, Badapanda T, Behera B and Anwar S 2013 J. Mater. Sci. 24 4033

    Google Scholar 

  41. Suman C K, Prasad K and Choudhary R N P 2004 Bull. Mater. Sci. 27 547

    Article  Google Scholar 

  42. Rout S K, Hussain A, Lee J S, Kim I W and Woo S I 2009 J. Alloys Compd. 477 706

    Article  Google Scholar 

  43. Padamavathi S N, Omprakash J, Sameera Devi C., Vithal M, Prasad G and Kumar G S 2015 Ferroelectrics 474 83

    Article  Google Scholar 

  44. Rout J, Padhee R, Das P R and Choudhary R N P 2013 Adv. Appl. Phys. 1 105

    Google Scholar 

  45. Sambasiva Rao K, Madhava Prasad D, Murali Krishna P and Swarna Latha T 2008 Silikaty 52 190

    Google Scholar 

Download references

Acknowledgements

We are thankful to M.P. Council of Science and Technology (MPCST) Bhopal, for financial assistance under Grant no. A/RD/RP-2/2014-15/224, Director, MANIT Bhopal for providing infrastructure to carry out this research project. Thankful to UGC-DAE, CSR Indore, for providing dielectric measurement facility (Dr A.M. Awasthi and Suresh Bhardwaj), and for providing XRD facility (Dr Mukul Gupta).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAJNISH KURCHANIA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DUBEY, S., KURCHANIA, R. Study of dielectric and ferroelectric properties of five-layer Aurivillius oxides: A2Bi4Ti5O18 (A = Ba, Pb and Sr) synthesized by solution combustion route. Bull Mater Sci 38, 1881–1889 (2015). https://doi.org/10.1007/s12034-015-1043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1043-4

Keywords

Navigation