Skip to main content
Log in

Magneto-structural properties of Ni–Zn nanoferrites synthesized by the low-temperature auto-combustion method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Using nickel, zinc and ferric nitrates, and glycine in a fuel-rich composition, Ni1−x Zn x Fe2O4 nanoparticles were prepared by a simple low-temperature auto-combustion method without further sintering at high temperatures. The auto-combusted powders obtained were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray (EDAX) analysis and vibrating scanning magnetometer measurements. XRD confirms the formation of pure nanocrystalline spinel phases with an average diameter of about 55 nm. Raman spectra show tetrahedral and octahedral sites in the structure of Ni1−x Zn x Fe2O4 and also imply the doping of Zn2+ and displacement of Fe3+ ions from the tetrahedral site. EDAX showed that the samples were close to the nominal compositions. The magnetic measurement shows that the saturation magnetization and remanence magnetization decreases with the increase in the zinc content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sugimoto M 1999 J. Am. Ceram. Soc. 82 269

    Article  Google Scholar 

  2. Lazarević Z ž, Jovalekić Č, Sekulić D, Slankamenac M, Romčević M, Milutinović A and Romčević N ž 2012 Sci. Sinter. 44 331

    Article  Google Scholar 

  3. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S and Muthamizhchelvan C 2011 Mater. Res. Bull. 46 2208

    Article  Google Scholar 

  4. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S and Muthamizhchelvan C 2011 Mater. Res. Bull. 46 2204

    Article  Google Scholar 

  5. Kasapoglu N, Baykal A, Toprak M S, Koseoglu Y and Bayrakdar H 2007 Turk. J. Chem. 31 659

    Google Scholar 

  6. Sepelak V, Baabe K, Mienert K, Schultze K, Krumeich F, Litterst F J and Becker K D 2003 J. Magn. Magn. Mater. 257 377

    Article  Google Scholar 

  7. Salunkhe A B, Khot V M, Phadatare M R, Thorat N D, Joshi R S, Yadav H M and Pawar S H 2014 J. Magn. Magn. Mater. 352 91

    Article  Google Scholar 

  8. Morrison S A, Cahill C L, Carpenter E E, Calvin S, Swaminathan R, McHenry M E and Harris V G 2004 J. Appl. Phys. 95 6392

    Article  Google Scholar 

  9. Krishna K R, Kumar K V and Ravinder D 2012 Adv. Mater. Phys. Chem. 2 185

    Article  Google Scholar 

  10. Vermaa A, Goela T C, Mendirattaa R G and Kishan P 2000 J. Magn. Magn. Mater. 208 13

    Article  Google Scholar 

  11. Vermaa A, Goela T C, Mendirattaa R G and Gupta R G 1999 J. Magn. Magn. Mater. 192 271

    Article  Google Scholar 

  12. Mohan G R, Ravinder D, Reddy A V R and Boyanov B S 1999 Mater. Lett. 40 39

    Article  Google Scholar 

  13. Ajmal M and Maqsood A 2007 Mater. Sci. Eng. B 139 164

    Article  Google Scholar 

  14. Sileo E E, Rotelo R and Jacobo S E 2002 Physica B: Condens. Matter 320 257

    Article  Google Scholar 

  15. Costa A C F M, Tortella E, Morelli M R and Kiminami R H G A 2003 J. Magn. Magn. Mater. 256 174

    Article  Google Scholar 

  16. Cabanas A and Poliakoff M 2001 J. Mater. Chem. 11 1408

    Article  Google Scholar 

  17. Song H J, Oh J H, Choi S C and Lee J C 2002 Phys. Status Solidi A 189 849

    Article  Google Scholar 

  18. Akther Hossain A K M, Mahmud S T, Seki M, Kawai T and Tabata H 2007 J. Magn. Magn. Mater. 312 210

    Article  Google Scholar 

  19. Deng H, Chen H and Li H 2007 Mater. Chem. Phys. 101 509

    Article  Google Scholar 

  20. Costa A C M, Tortella E, Morelli M R, Kaufman M and Kiminami R H G A 2002 J. Mater. Sci. 37 3569

    Article  Google Scholar 

  21. Costa A C M, Silva V J, Cornejo D R, Morelli M R, Kiminami R H and Gama L 2008 J. Magn. Magn. Mater. 320 e370

    Article  Google Scholar 

  22. Costa A C M, Diniz A P, Silva V J, Kiminami R H, Cornejo D R, Gama A M, Rezende M C and Gama L 2009 J. Alloys Compd. 483 563

    Article  Google Scholar 

  23. Shannon R D 1976 Acta Crystallogr 32 751

    Article  Google Scholar 

  24. Ahlawat A and Sathe V G 2011 J. Raman Spectrosc. 42 1087

    Article  Google Scholar 

  25. Dubey A, Sathe V G and Rawat R 2008 J. Appl. Phys. 104 113530

    Article  Google Scholar 

  26. Carta D, Casula M F, Falqui A, Loche D, Mountjoy G, Sangregorio C and Corrias A 2009 J. Phys. Chem. 113 8606

    Google Scholar 

  27. Ivanov V G, Abrashev M V, Iliev M N, Gospodinov M M J and Aroyo M M I 2010 Phys. Rev. B: Condens. Matter 82 024104

    Article  Google Scholar 

  28. Wang Z, Lazor P, Saxena S K and O’Neil H S C 2002 Mater. Res. Bull. 37 1589

    Article  Google Scholar 

  29. Kishan P, Sagar D R and Swarup P 1985 J. Less Common Met. 108 345

    Article  Google Scholar 

  30. Kambale R C, Shaikh P A, Kamble S S and Kolekar Y D 2009 J. Alloys Compd. 478 599

    Article  Google Scholar 

  31. Costa A C F M 2002 PhD Thesis (Sao Paulos, Brazil: Department of Engineering of Materials, Federal University of Sao Carlos)

  32. Bercoff P G and Bertorello H R 2000 J. Magn. Magn. Mater. 213 56

    Article  Google Scholar 

  33. Hu P, Yang H, Pan D, Wang H, Tian J, Zhang S, Wang X and Volinsky A A 2010 J. Magn. Magn. Mater. 322 173

    Article  Google Scholar 

  34. Kumar E R, Jayaprakash R and Kumar S 2014 Mater. Sci. Semiconduct. Process. 17 173

    Article  Google Scholar 

  35. Zhao L, Yang H, Yu L, Cui Y, Zhao X, Zou B and Feng S 2006 J. Magn. Magn. Mater. 301 445

    Article  Google Scholar 

  36. Shirsath S E, Jadhav S S, Toksha B G, Patange S M and Jadhav K M 2011 J. Appl. Phys. 110 013914

    Article  Google Scholar 

  37. Herzer G 1990 IEEE Trans. Magn. 26 1397

    Article  Google Scholar 

  38. Zeng Q, Baker I, McCreary V and Yan Z 2007 Mater. Res. Soc. Symp. 980 0980–II06-09

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C O EHI-EROMOSELE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EHI-EROMOSELE, C.O., ITA, B.I., IWEALA, E.E. et al. Magneto-structural properties of Ni–Zn nanoferrites synthesized by the low-temperature auto-combustion method. Bull Mater Sci 38, 1465–1472 (2015). https://doi.org/10.1007/s12034-015-1038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1038-1

Keywords

Navigation