Skip to main content
Log in

Characterization and thermal expansion of Sr2Fe x Mo2−x O6 double perovskites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Double perovskite oxides Sr2 Fe x Mo2−x O6 (x = 0.8, 1.0, 1.2, 1.3 and 1.4) (SFMO) of different compositions were prepared by sol–gel growth followed by annealing under reducing atmosphere conditions of H2/Ar flow. X-ray powder diffraction studies revealed that the crystal structure of the samples changes from tetragonal to cubic at around x = 1.2. Lattice parameters and unit cell volume of these samples found to decrease with the increase in Fe content. The characteristics absorption bands observed in the range 400–1000 cm−1 of Fourier transform infrared spectra indicate the presence of FeO6 and MoO6 octahedra and confirm the formation of double perovskite phase. The value of g ∼ 2.00 obtained from electron spin resonance studies indicates that Fe is in 3+ ionic state in the SFMO samples. Dilatometric studies of these samples reveal that the average value of coefficient of thermal expansion (\( {\overline {\alpha }}\)) increases with the increase in temperature or Fe content in SFMO samples. The low value of coefficient of thermal expansion 1.31 × 10−6 C−1 obtained for Sr2Fe0.8Mo1.2O6 in the present study in the temperature range of 40–100C makes it useful as anode material in fuel cells. The coefficient of thermal expansion (\( {\overline {\alpha }}\)) and the unit cell volume (V) of SFMO samples vary inversely with composition in agreement with Grüneisen relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature (Lond.) 395 677

    Article  Google Scholar 

  2. Ray S, Middey S, Jana S, Banerjee A, Sanyal P, Rawat R, Gregoratti L and Sarma D D 2011 J. EPL 94 47007

    Article  Google Scholar 

  3. Lu M F, Wang J P, Liu J F, Song W, Hao X F, Zhou D F, Liu X J, Wu Z J and Meng J 2007 J. Alloys Compd. 428 214

    Article  Google Scholar 

  4. Gaur A, Varma G D and Singh H K 2008 J. Alloys Compd. 460 581

    Article  Google Scholar 

  5. Bufaiçal L, Adriano C, Lora-Serrano R, Duque J G S, Mendonça-Ferreira L, Rojas-Ayala C, Baggio-Saitovitch E, Bittar E M and Pagliuso P G 2014 J. Solid State Chem. 212 23

    Article  Google Scholar 

  6. Feng X M, Rao G H, Liu G Y, Yang H F, Liu W F, Ouyang Z W and Liang J K 2004 Physica B 344 21

    Article  Google Scholar 

  7. Markandeya Y, Suresh K and Bhikshamaiah G 2011 J. Alloys Compd. 509 9598

    Article  Google Scholar 

  8. Markandeya Y, Saritha D, Vithal M, Singh A K and Bhikshamaiah G 2011 J. Alloys Compd. 509 5195

    Article  Google Scholar 

  9. Huo G, Ren X, Qian L, Zhang N, Liu S and Yan X 2013 , J. Magn. Magn. Mater. 343 119

    Article  Google Scholar 

  10. Mohamed Musa Saad H -E 2012, Physica B 407 2512

    Article  Google Scholar 

  11. Zhang L, Zhou Q, He Q and He T 2010 J. Power Sources 195 6356

    Article  Google Scholar 

  12. Mostafa M F, Ata-Allah S S, Youssef A A A and Refai H S 2008 J. Magn. Magn. Mater. 320 344

    Article  Google Scholar 

  13. Lavat A E and Baran E J 2003 Vib. Spectrosc. 32 167

    Article  Google Scholar 

  14. Gulley J E and Jaccarino V 1972 Phys. Rev. B 6 58

    Article  Google Scholar 

  15. Kapusta C., Riedi P C, Zajac D, Sikora M, De Teresa J M, Morellon L and Ibarra M R 2002 J. Magn. Magn. Mater. 242–245 701

    Article  Google Scholar 

  16. Kim S B, Lee B W and Kim C S 2002 J. Magn. Magn. Mater. 242–245 747

    Article  Google Scholar 

  17. Xue J, Shen Y and He T 2011 J. Power Sources 196 3729

    Article  Google Scholar 

  18. Topfer J and Goodenough J B 1997 Chem. Mater. 9 1467

    Article  Google Scholar 

  19. van Roosmalen J A M, van Vlaanderen P, Cordfunke E H P, Ijdo W L and Ijdo D J W 1995 J. Solid State Chem. 114 516

    Article  Google Scholar 

  20. Takeda Y, Kanno K, Takada T, Yamamoto O, Takano M, Nakayama N and Bando Y 1986 J. Solid State Chem. 63 237

    Article  Google Scholar 

  21. Yoshida K, Keuchi S I, Shimizu H, Okayasu S and Suzuki T 2011 J. Phys. Soc. Jpn. 80 044716

    Article  Google Scholar 

  22. Prasanth Kumar V, Reddy Y S, Kistaiah P, Prasad G and Vishnuvardhan Reddy C 2008 Mater. Chem. Phys. 112 711

    Article  Google Scholar 

  23. Falcon H, Barbero J A, Araujo G, Casais M T, Martinez-Lope M J, Alonso J A and Fierro J L G 2004 Appl. Catal. B—Environ. 53 37

    Article  Google Scholar 

  24. Onuma S, Yashiro K, Miyoshi S, Kaimai A, Matsumoto H, Nigara Y, Kawada T, Mizusaki J, Kawamura K, Sakai N and Yokokawa H 2004 Solid State Ion. 174 287

    Article  Google Scholar 

  25. Eastabrook J N 1957 Philos. Mag. 2 1421

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (GB) wish to thank DST for providing financial assistance to carry out this work through a project OU-DST-PURSE-Scheme No. A.60. We express our gratitude to the Head, Department of Physics, Osmania University and the Head, Department of Physics and Principal, Nizam College, Osmania University, Hyderabad, for their encouragement. We also thank Prof V Seshubai, University of Hyderabad, for providing ESR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G BHIKSHAMAIAH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MARKANDEYA, Y., REDDY, Y.S., BALE, S. et al. Characterization and thermal expansion of Sr2Fe x Mo2−x O6 double perovskites. Bull Mater Sci 38, 1603–1608 (2015). https://doi.org/10.1007/s12034-015-0972-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0972-2

Keywords

Navigation