Skip to main content

Advertisement

Log in

Synthesis of zinc oxide nanoparticles using tea leaf extract and its application for solar cell

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We report the synthesis of zinc oxide (ZnO) nanoparticles and its composite with natural graphite (NG) powder for application in solar cell. ZnO nanoparticles were synthesized using green tea leaf extract as non-toxic and eco-friendly reducing material under microwave irradiation. The formation of ZnO nanoparticles was monitored by the colour changes during the reaction. The synthesized ZnO nanoparticles were characterized by particle size analyzer (dynamic light scattering), scanning electron microscope, UV–visible spectroscopy, atomic force microscope and fluorescence spectroscopy. The average particle size of the ZnO nanoparticles was found to be 26 nm. The synthesized ZnO nanoparticles were further used to prepare ZnO/NG composite material with commercially available NG powder. The current–voltage (I–V) characteristics of thin film of ZnO/NG nanocomposite were investigated. J SC (short-circuit photocurrent), V OC (open-circuit photovoltage), FF (fill factor) and η (efficiency of the solar cell) were measured for ZnO/NG nanocomposite. Interestingly, the cell showed a good power conversion efficiency of 3.54% with high stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Singh N, Mehra R M, Kapoor A and Soga T 2011 J. Renew. Sustain. Ener. 4 013110

    Article  Google Scholar 

  2. Wang J, Sallet V, Jomard F, Rego A M, Elamurugu E, Martins R and Fortunato E 2007 Thin Solid Films 515 8785

    Article  Google Scholar 

  3. Wang Z L 2004 J. Phys. Condens. Matter 16 829

    Article  Google Scholar 

  4. Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M and Hosono H 2003 Science 300 1269

    Article  Google Scholar 

  5. Nakada T, Hirabayashi Y, Tokado T, Ohmori D and Mise T 2004 Sol. Energy 77 739

    Article  Google Scholar 

  6. Lee S Y, Shim E S, Kang H S, Pang S S and Kang J S 2005 Thin Solid Films 31 437

    Google Scholar 

  7. Könenkamp R, Word R C and Schlegel C 2004 Appl. Phys. Lett. 85 6004

    Article  Google Scholar 

  8. Sharma N, Kumar J, Thakur S, Sharma S and Shrivastava V 2013 Drug Invention Today 5 50

    Article  Google Scholar 

  9. Dinguha Bao, Gu Haoshuang, Kuang and Anxiang 1998 Thin Solid Films 132 37

    Google Scholar 

  10. Ehsan H Sabbar, Mustafa H Saleh and Mohammed Salih 2012 Int. J. Adv. Sci. Technol. 44 89

    Google Scholar 

  11. Sinha S, Pan I, Chanda P and Sen S K 2009 J. Appl. Biosci. 19 1113

    Google Scholar 

  12. Liu J, Qiao H Q H and Lu G Q 2011 Small 7 425

    Article  Google Scholar 

  13. Grass L R N, Athanassiou E K and Stark W J 2010 Chem. Mater. 22 155

    Article  Google Scholar 

  14. Tiwari D K, Behari J and Sen P 2008 Curr. Sci. 95 647

    Google Scholar 

  15. Mohanpuria P, Rana N K and Yadav S K 2008 J. Nanopart. Res. 10 507

    Article  Google Scholar 

  16. Honary S, Barabadi H, Gharaei-Fathabad E and Naghibi F 2012 Digest J. Nanomater. Biostruct. 7 999

    Google Scholar 

  17. Capek I 2004 Adv. Colloid Interface Sci. 110 49

    Article  Google Scholar 

  18. Table A, Petit C and Pileni M P 1997 Chem. Mater. 9 950

    Article  Google Scholar 

  19. Yin B S, Ma H Y, Wang S Y and Chen S H 2003 J. Phys. Chem. B 107 8898

    Article  Google Scholar 

  20. Zhu J J, Liu S W, Palchik O, Koltypin Y and Gedanken A 2000 Langmuir 16 6396

    Article  Google Scholar 

  21. Sangeetha G, Rajeshwari S and Venckatesh R 2011 Mater. Res. Bull. 46 2560

    Article  Google Scholar 

  22. Jayaseelan C, Rahuman A A, Kirthi A V, Marimuthu S, Santhoshkumar T and Bagavan A 2012 Spectrochim. Act A Mol. Biomol. Spectrosc. 90 78

    Article  Google Scholar 

  23. Jain N, Bhargava A, Tarafdar J C, Singh S K and Panwar J A 2013 J. Appl. Microbiol. Biotechnol. 97 859

    Article  Google Scholar 

  24. Sutradhar P, Saha M and Maiti D 2014 J. Nanostruct. Chem. 4 86

    Article  Google Scholar 

  25. Chandran S P, Chaudhary M and Pasricha R 2006 Biotechnol. Prog. 22 577

    Article  Google Scholar 

  26. Susan A, Ahmada B Mansor, Farideh Namvar and Rosfarizan Mohamad 2013 Materials 6 5942

  27. Waltera Michael G, Rudineb Alexander B and Wamser Carl C 2010 J. Porphyrin Phthalocyanines 14 759

    Article  Google Scholar 

  28. Stanley A G 1975 Appl. Sol. State Sci. 5 251

    Article  Google Scholar 

  29. Ashour A, Ramadan A A, Abd EL-Hady K and Akl A A S 2005 J. Optoelectron. Adv. Mater. 7 1493

    Google Scholar 

Download references

Acknowledgements

We express our gratitude to the Director, National Institute of Technology, Agartala, for allowing to publish the results. Financial assistance from CPRI, Bangalore, is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MITALI SAHA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SUTRADHAR, P., SAHA, M. Synthesis of zinc oxide nanoparticles using tea leaf extract and its application for solar cell. Bull Mater Sci 38, 653–657 (2015). https://doi.org/10.1007/s12034-015-0895-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0895-y

Keywords

Navigation