Skip to main content
Log in

Cost effective and shape controlled approach to synthesize hierarchically assembled NiO nanoflakes for the removal of toxic heavy metal ions in aqueous solution

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Hierarchical mesoporous NiO nanoflakes (NiOs) have been synthesized in high yield via a simple, economical and environmentally friendly hydrothermal route. The as-prepared NiOs were characterized by powder X-ray diffraction (PXRD), scanning electronic microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction patterns (SAED), X-ray energy dispersive spectroscopy (EDS) and nitrogen adsorption–desorption techniques (Brunauer–Emmett–Teller, BET). Adsorption of heavy metal ions onto the as-prepared sample from aqueous solutions was investigated using differential pulse anodic stripping voltametry (DPASV) technique and discussed. The product possesses a BET surface area of 69.27 m2 g−1. It is found that NiOs exhibited the excellent performance for the removal of Hg(II), Pb(II) and Cd(II) from aqueous solution. The equilibrium adsorption data of Hg(II), Pb(II) and Cd(II) on the as-prepared NiOs were analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities for removal of Hg(II), Pb(II) and Cd(II) were determined using the Langmuir equation and found to be 1324 .5, 1428 .9 and 1428 .5 mg g−1, respectively. Adsorption kinetics of all the metal ions followed pseudo second-order model. Moreover, NiOs can be recycled by simple acid treatment, which could retain the high removal efficiency in three successive cycles. This study suggests that nanoflakes could be explored as a new adsorbent with high efficiency and recyclability for removing heavy metal ions from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Mondal M K 2009 J. Environ. Manage. 90 3266

  2. Hamidpour M, Kalbasi Afyuni M, Shariatmadari H, Holm P E and Hansen H C B 2010 J. Hazard. Mater. 181 686

  3. Zein R, Suhaili R, Earnestly F, Indrawati and Munaf E 2010 J. Hazard. Mater. 181 52

  4. Shafaei A, Ashtiani F Z and Kaghazchi T 2007 Chem. Eng. J. 133 311

  5. Ho Y S and Wang C C 2008 J. Hazard. Mater. 156 398

  6. Davis S A, Burkett S L, Mendelson N H and Mann S 1997 Nature 385 420

  7. Walsh D, Arcelli L, Ikoma T, Tanaka J and Mann S 2003 Nat. Mater. 2 386

  8. Yu J G, Su Y R and Cheng B 2007a Adv. Funct. Mater. 17 1984

  9. Yu J G, Zhang L J, Cheng B and Su Y R 2007b J. Phys. Chem. C. 111 10582

  10. Yogesh K K, Muralidhara H B, Arthoba N Y, Balasubramanyam J and Hanumanthappa H 2013a Powder Technol. 246 125

  11. Liu J, Du S F, Wei L Q, Liu H D, Tian Y J and Chen Y F 2006 Mater. Lett. 60 3601

  12. Yu J G, Liu W and Yu H G 2008 Cryst. Growth Des. 8 930

  13. Yu J G and Qi L F 2009 J. Hazard. Mater. 169 221

  14. Cai W Q, Yu J G, Cheng B, Su B L and Jaroniec M 2009 J. Phys. Chem. C. 113 14739

  15. Yogesh K K, Muralidhara H B, Arthoba N Y, Balasubramanyam J and Hanumanthappa H 2013b Desalin. Water Treat. 51 1

  16. Yogesh K K, Muralidhara H B, Arthoba N Y, Balasubramanyam J and Hanumanthappa H 2013c Powder Technol. 239 208

  17. Izaki Y, Mugikura Y, Watanabe T, Kawase M and Selman J R 1998 J. Power. Sources 75 236

  18. Ichiyanagi Y, Wakabayashi N, Yamazaki J, Yamada S and Kimishima Y 2003 Phys. B 329 862

  19. Ai L and Zeng Y 2013 Chem. Eng. J. 215 269

  20. Kasuga T 2006 Thin Solid Films 496 141

  21. Hongxia Q, Zhiqiang W, Hua Y, Lin Z and Xiaoyan Y 2009 J. Nanomater. 2009 1

  22. Lopez T, Manjarrez J, Rembao D, Vinogradova E, Moreno A and Gonzalez R D 2006 Mater. Lett. 60 2903

  23. Bahari Y M M, Sadrnezhaad S K and Hosseini D 2008 J. Nanomater. 2008 4

  24. Xu S and Wang Z L 2000 Nano Res. DOI: 10.1007/s12274-011-0160-7 10.1007/s12274-011-0160-7

  25. Yakui B, Tengfei Y, Qing G, Guoan C, Ruiting Z, Yakui B, Tengfei Y, Qing G, Guoan C and Ruiting Z 2012 Powder Technol. 227 35

  26. Rahman M S and Islam M R 2009 Chem. Eng. J. 149 273

  27. Anbia M and Ghassemian Z 2011 Chem. Eng. J. 89 2770

  28. Nian L, Lide Z, Yong Z C, Yue T and Huimin W 2011 J. Hazard. Mater. 189 265

  29. Senthil Kumar P, Ramalingam S, Dinesh Kirupha S A, Murugesan A, Vidhyadevi C and Sivanesan C 2010 Chem. Eng. J. 133 311

  30. Meng W W, Chi C K, Buenda D Rogel, Maria L P Dalida 2010 Carbohyr. Polym. 80 891

  31. Cheng T W, Lee M L, Ko M S, Ueng T H and Yang S F 2012 Appl. Clay. Sci. 56 90

  32. Li S X, Zheng F Y, Huang Y and Ni J C 2011 J. Hazard. Mater. 186 423

  33. Xue M, Guanbo H, Weisong X, Wei W, Yu L and Jianping G 2012 Carbon 50 4856

  34. Divya C and Nalini S 2008 Bioresour. Technol. 99 9021

  35. Hardiljeet K B, Meera J and Denis M O 2011 J. Hazard. Mater. 186 458

  36. Hasanur J, Debarati C and Papita S 2009 Clean-Soil, Air, Water 37 704

  37. Neha C, Shweta G, Nahar S, Sukhvir S, Saikh S I, Kedar N S and Renu P 2011 J. Colloid. Interface Sci. 363 42

  38. Acharya J, Sahu J N, Mohanty C R and Meikap B C 2009 Chem. Eng. J. 149 249

  39. Zou W H, Han R P, Chen Z Z, Shi J and Liu H M 2006 J. Chem. Eng. Data 51 534

  40. Wang S G, Gong W X, Liu X W, Yao Y W, Gao B Y and Yue Q Y 2007 Sep. Puri. Technol. 58 17

  41. Sheela T, Arthoba N Y, Vishwanatha R, Basavanna S and Venkatesha T G 2012b Powder Technol. 217 163

  42. Zabihi M, Haghighi A A and Ahmadpour A 2010 J. Hazard. Mater. 174 251

  43. Gulay B M and Yakup A 2008 Chem. Eng. J. 143 133

  44. Jeriffa D C 2002 Inter. J. Indus. Chem. 3 1

  45. Sheela T and Arthoba N Y 2012a Chem. Eng. J. 191 123

  46. Chunhua X and Caiping Y 2009 Chem. Eng. J. 155 844

  47. Meena A K, Mishra G K, Rai P K, Rajagopal C and Nagar P N 2005 J. Hazard. Mater. 122 161

Download references

Acknowledgements

We are grateful to the Visvesvaraya Technological University (VTU) for providing financial support under the research grant scheme (Project No. VTU/Aca/2010-11/a-9/11353). We are also grateful to the authorities of the KS Institute of Technology, Bangalore, for their support and IIT Kanpur, IIT Bombay and PPRI Bangalore for providing instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H B MURALIDHARA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KUMAR, K.Y., MURALIDHARA, H.B., NAYAKA, Y.A. et al. Cost effective and shape controlled approach to synthesize hierarchically assembled NiO nanoflakes for the removal of toxic heavy metal ions in aqueous solution. Bull Mater Sci 38, 271–282 (2015). https://doi.org/10.1007/s12034-014-0791-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0791-x

Keywords

Navigation