Skip to main content
Log in

Structural, Optical and Photoluminescence Study of Nanocrystalline SnO2 Thin Films Deposited by Spray Pyrolysis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Undoped SnO2 thin films prepared by spray pyrolysis method reveal polycrystalline nature with prominent peaks along (110), (101) and (211) planes. All the films are nanocrystalline with particle size lying in the range of 3·14–8·6 nm calculated by DS formula. Orientation along plane (200) decreases continuously as molar concentration of SnO2 increases. Dislocation density along plane (110) also decreases as molar concentration increases except 0·4 M SnO2 thin film. Scanning electron microscopy image of the films contain jelly structures along with agglomerated clusters of particles. SnO2 synthesized successfully, which confirms by Fourier transform infra-red spectroscopy. The optical transmittance spectra of 0·2 M SnO2 thin film shows transmittance about 50–60% transmission in visible and near infrared region with a sharp cut off in the ultraviolet region. The transmission decreases in visible and near infrared region as molar concentration increases. Broad UV emission at 398 nm is observed in photoluminescence spectra of the films along with a blue emission, when excited at 250 nm wavelength. Emission intensity randomly changed as SnO2 molar concentration increases. When excited at 320 nm, one UV and two visible peaks appeared at 385, 460 and 485 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amalric-Popescu, D., and F. Bozon-Verduraz. 2001. Catalysis Today 70: 139.

    Article  Google Scholar 

  • Chen, H.T., X.L. Wu, S.J. Xiong, W.C. Zhang, and Zhu. 2009. J. Appl. Phys. A97: 365.

    Article  Google Scholar 

  • Elam Jeffrey, W., A. Baker David, J. Hryn Alexander, B.F. Martinson Alex, J. Pellin Michael, and T.H. Joseph. 2008. J. Vac. Sci. Technol. A26: 2.

    Google Scholar 

  • Fang, L.M., X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, W.L. Zhou, and L.M. Wang. 2008. J. Alloys Compds. 454: 261.

    Article  Google Scholar 

  • Gu, F., S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, and D.R. Yuan. 2003a. Inorg. Chem. Commun. 6: 882.

    Article  Google Scholar 

  • Gu, F., S.F. Wang, C.F. Song, M.K. Lu, X.Y. Qi, G.J. Zhou, D. Xu, and D.R. Yuan. 2003b. Chem. Phys. Lett. 372: 451.

    Article  Google Scholar 

  • He Jr., H., H. Te Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, and Z.L. Wang. 2006. Small 2: 116.

    Article  Google Scholar 

  • Her, Y.C., J.Y. Wu, Y.R. Lin, and S.Y. Tsai. 2006. Appl. Phys. Lett. 89: 043115.

    Article  Google Scholar 

  • Jeong, J., S.P. Choi, C.I. Chang, D.C. Shin, J.S. Park, B.T. Lee, Y.J. Park, and H. Song. 2003. J. Solid State Commun. 127: 595.

    Article  Google Scholar 

  • Khan, Z.R., M.S. Khan, M. Zulfequar, and M.S. Khan. 2011. Mater. Sci. Appl. 2: 340.

    Google Scholar 

  • Kim, T.W., D.U. Lee, and Y.S. Yoon. 2000. J. Appl. Phys. 88: 3759.

    Article  Google Scholar 

  • Lee, E.J.H., C. Ribeiro, T.R. Giraldi, E. Longo, E.R. Leite, and J.A. Varela. 2004. Appl. Phys. Lett. 84: 1745.

    Article  Google Scholar 

  • Liu, C.M., X.T. Zu, Q.M. Wei, and L.M. Wang. 2006. J. Phys. D: Appl. Phys. 39: 2494.

    Article  Google Scholar 

  • Misra, K.P., R.K. Shukla, A. Srivastava, and A. Srivastava. 2009. Appl. Phys. Lett. 95: 031901.

    Article  Google Scholar 

  • Moon, T., S.T. Hwang, D.R. Jung, D. Son, C. Kim, J. Kim, M. Kang, and B. Park. 2007. J. Phys. Chem. C111: 4164.

    Google Scholar 

  • Morais, E.A.D., L.V.A. Scalvi, M.R. Martins, and S.J.L. Ribeiro. 2006. Braz. J. Phys. 36: 270.

    Article  Google Scholar 

  • Patil, P.S., R.K. Kawar, T. Seth, D.P. Amalnerkar, and P.S. Chigare. 2003. Ceram. Int. 29: 725.

    Article  Google Scholar 

  • Rozati, S.M., and E. Shadmani. 2010. Surf. Interf. Anal. 42: 1160.

    Article  Google Scholar 

  • Singh, M.K., M.C. Mathpal, and A. Agarwal. 2012. Chem. Phys. Lett. 536: 87.

    Article  Google Scholar 

  • Srivastava, A., R.K. Shukla, and K.P. Misra. 2011. Cryst. Res. Technol. 46: 949.

    Google Scholar 

  • Torabi, M., and S.K. Sadrnezhaad. 2011. J. Power Sources 196: 399.

    Article  Google Scholar 

  • Vadivel, K., V. Arivazhagan, and S. Rajesh. 2011. Int. J. Sci. & Eng. Res. 2: 4.

    Google Scholar 

  • Vijayalakshmi, S., S. Venkataraj, M. Subramanian, and R. Jayavel. 2008. J. Phys. D: Appl. Phys. 41: 035505.

    Article  Google Scholar 

  • Xiang, X., X.T. Zu, S.L. Zhu, M. Wang, V. Shutthanandan, P. Nachimuthu, and Y. Zhang. 2008. J. Phys. D: Appl. Phys. 41: 225102.

    Article  Google Scholar 

  • Zhang, B., Y. Tian, J.X. Zhang, and W. Cai. 2011. J. Optoelectron. Adv. Mater. 13: 89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R K Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A., Shukla, R.K. Structural, Optical and Photoluminescence Study of Nanocrystalline SnO2 Thin Films Deposited by Spray Pyrolysis. Bull Mater Sci 37, 417–423 (2014). https://doi.org/10.1007/s12034-014-0695-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0695-9

Keywords

Navigation