Skip to main content
Log in

Size-dependent magnetic properties in Cu0.25Co0.25Zn0.5Fe2O4

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Cu0.25Co0.25Zn0.5Fe2O4 nanoparticles were prepared by a co-precipitation method and the size was varied by varying annealing temperatures. The cation distribution, estimated using Mössbauer spectroscopy, shows that it is the same for all samples, irrespective of the size. The variation of Curie temperature and saturation magnetization as a function of particle size, studied using d.c. magnetization, clearly indicates that these are a result of finite size scaling effects. The superparamagnetic size limit is estimated to be 8 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai L and Jiang J 2010 Curr. Appl. Phys. 10 284

    Article  Google Scholar 

  • Andrés Vergés M, Costo R, Roca A G, Marco J F, Goya G F, Serna C J and Morales M P 2008 J. Phys. D: Appl. Phys. 41 134003

    Article  Google Scholar 

  • Berkowitz A E, Schuele W J and Flanders P J 1968 J. Appl. Phys. 39 1261

    Article  Google Scholar 

  • Binder K 1972 Physics 62 508

    Google Scholar 

  • Caizer C and Stefanescu M 2002 J. Phys. D: Appl. Phys. 35 3035

    Article  Google Scholar 

  • Chinnasamy C N, Jeyadevan B, Shinoda K, Tohji K, Djayaprawira D J, Takahashi M, Justin R Joseyphus and Narayanasamy A 2003 Appl. Phys. Lett. 83 2862

    Article  Google Scholar 

  • Choudhari A, Mandal M and Mandal K 2009 J. Alloys Compd. 48 7698

    Google Scholar 

  • Coey J M D 1971 Phys. Rev. Lett. 27 1140

    Article  Google Scholar 

  • Coey J M D and Khalafella K 1972 Phys. Status Solidi. A11 229

    Article  Google Scholar 

  • Costa A C F M, Tortella E, Morelli M R and Kiminami R H G A 2003 J. Magn. Magn. Mater. 256 174

    Article  Google Scholar 

  • Dennis C L, Jackson A J, Borchers J A, Hoopes P J, Strawbridge R, Foreman A R, Van Lierop J, Grüttner C and Ivkov R 2009 Nanotechnology 20 395103

    Article  Google Scholar 

  • Gajbhiye N S, Balaji G and Ghafari M 2002 Phys. Status Solidi A189 357

    Article  Google Scholar 

  • Garcia del Muro M, Batlle X and Labarta A 1999 Phys. Rev. B59 13584

    Article  Google Scholar 

  • Hassnain J G, Rizwan A S, Hasanain S K, Güntherodt G and Ismat S 2010 J. Appl. Phys. 108 063921

    Article  Google Scholar 

  • Hiroi K, Komatsu K and Sato T 2011 Phys. Rev. B83 224423

    Article  Google Scholar 

  • Hu H, Tian Z, Liang J, Yang H, Dai A, An L, Wu H and Yang S 2011 Nanotechnology 22 085707

    Article  Google Scholar 

  • Jeun M, Lee S, Kyeong Kang J, Tomitaka A, Wook Kang K, Ii Kim Y, Takemura Y, Chung K W, Kwak J and Bae S 2012 Appl. Phys. Lett. 100 092406

    Article  Google Scholar 

  • Kihal A, Fillion G, Bouzabata B and Barbara B 2012 Phys. Status Solidi B249 604

    Article  Google Scholar 

  • Kodama R H, Berkowitz A E, McNiff Jr E J and Foner S 1996 Phys. Rev. Lett. 77 394

    Article  Google Scholar 

  • Krieble K, Schaeffer T, Paulsen J A, Ring A P, Lo C C H and Snyder J E 2005 J. Appl. Phys. 97 10F101

    Article  Google Scholar 

  • Kumar V, Ranaa A, Yadav M S and Pant R P 2008 J. Magn. Magn. Mater. 320 1729

    Article  Google Scholar 

  • Lakshmi N, Bhargava H, Suwalka O P, Venugopalan K, Reddy V R and Gupta A 2009 Phys. Rev. B80 174425

    Article  Google Scholar 

  • Lima E, De Biasi E, Mansilla M V, Saleta M E, Effenberg F, Rossi L M, Cohen R, Rechenberg H R and Zysler R D 2010 J. Appl. Phys. 108 103919

    Article  Google Scholar 

  • Mørup S, Hansen M F and Frandsen C 2010 Beilstein J. Nanotechnol. 1 182

    Article  Google Scholar 

  • Roy S, Dubenko I, Eddorh D D and Ali N 2004 J. Appl. Phys. 96 1202

    Article  Google Scholar 

  • Sharma S K, Kumar R, Kumar S, Knobel M, Meneses C T, Sivakumar V V, Reddy V R, Singh M and Lee C G 2008 J. Phys. Condens Matter. 20 235214

    Article  Google Scholar 

  • Šutka A, Pärna R, Zamovskis M, Kisand V, Mezinskis G, Kleperis J, Maiorov M and Jakovlev D 2013 Phys. Status Solidi doi: 10.1002/pssa.201329039

    Google Scholar 

  • Sawatzky G A, Van Der Woude F and Morrish A H 1969 Phys. Rev. 187 747

    Article  Google Scholar 

  • Sindhu S and Birajdar D D 2013 IOSR J. Appl. Phys. 3 33

    Article  Google Scholar 

  • Tailhades Ph, Villette C, Rousset A, Kulkarni G U, Kannan K R, Rao C N R and Lenglet M 1998 J. Solid State Chem. 141 56

    Article  Google Scholar 

  • Tang Z X, Chen J P, Sorensen C N, Kalabunde K J and Hadjipanayis G C 1992 Phys. Rev. Lett. 68 3114

    Article  Google Scholar 

  • Tang Z X, Sorensen C N, Kalabunde K J and Hadjipanayis G C 1991 Phys. Rev. Lett. 67 3602

    Article  Google Scholar 

  • Thakur A, Thakur P and Hsu J H 2012 J. Appl. Phys. 111 07A305

    Google Scholar 

  • Tiwari S D and Rajeev K P 2005 Phys. Rev. B72 104433

    Article  Google Scholar 

  • Upadhyay C 2003 Ph D thesis (submitted to IIT Kanpur)

    Google Scholar 

  • Vázquez-Vázquez C, López-Quintela M A, Buján-Núñez M C and Rivas J 2010 J. Nanopart. Res. 13 1663

    Article  Google Scholar 

  • Yamamoto Y and Makino A 1994 J. Magn. Magn. Mater. 133 500

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lakshmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargava, H., Sudheesh, V.D., Nehra, J. et al. Size-dependent magnetic properties in Cu0.25Co0.25Zn0.5Fe2O4 . Bull Mater Sci 37, 953–961 (2014). https://doi.org/10.1007/s12034-014-0031-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0031-4

Keywords

Navigation