Skip to main content

Advertisement

Log in

Suppression of B7-H7 Enhanced MCF-7 Cancer Cell Line’s Chemosensitivity to Paclitaxel

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The B7-H7 is the newest addition to the B7 family of proteins that is present in the majority of malignancies. In this respect, the goal of the work was to investigate the impact of B7-H7 inhibition on breast cancer cells when paclitaxel and small interference RNA (siRNA) were combined. B7-H7 siRNA was used with Paclitaxel to treat MCF-7 cells. The IC50 of Paclitaxel and the cell survival was then assessed through using MTT assay. Investigation was conducted using flow cytometry to both the induction of apoptosis and the cell cycle. In addition, the clonogenic capacity of MCF-7 cells was investigated. Furthermore, qRT-PCR, was used to evaluate expression of genes. Our results demonstrated that suppressing B7-H7 sensitizes MCF-7 cells to Paclitaxel by triggering apoptosis and altering the expression of critical apoptosis mediator genes. In addition, the cell cycle was stopped in the sub-G1 and also G2-M phases as a result of the combination therapy leading prevention of developing colonies by MCF-7 cells. B7-H7 silencing improved the chemosensitivity of MCF-7 cells to Paclitaxel and demonstrated antiproliferative effects. After the adequate study has been conducted, this strategy may be regarded as a possible alternative treatment option for this cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data is available upon request when necessary.

References

  1. Momenimovahed, Z., & Salehiniya, H. (2017). Incidence, mortality and risk factors of cervical cancer in the world. Biomedical Research and Therapy, 4(12), 1795–1811.

    Article  Google Scholar 

  2. Benson, J. R., & Jatoi, I. (2012). The global breast cancer burden. Future oncology, 8(6), 697–702.

    Article  CAS  PubMed  Google Scholar 

  3. Ferley, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., & Mathers, C. (2017). GLOBOCAN 2012 v1. 2. Cancer incidence and mortality worldwide: IARC cancer base No. 11: International Agency for Research on Cancer. 2014.

  4. Eslamkhah, S., Alizadeh, N., Safaei, S., Mokhtarzadeh, A., Amini, M., Baghbanzadeh, A., & Baradaran, B. (2021). Micro RNA-34a sensitizes MCF-7 breast cancer cells to carboplatin through the apoptosis induction. Gene Reports, 25, 101361.

    Article  CAS  Google Scholar 

  5. Ries, L. A. G., Melbert, D., Krapcho, M., Stinchcomb, D. G., Howlader, N., Horner, M. J., Mariotto, A., Miller, B. A., Feuer, E. J., Altekruse, S. F., & Lewis, D. R. (2008). SEER cancer statistics review, 1975–2005 (p. 2999). National Cancer Institute.

    Google Scholar 

  6. Yedjou, C. G., Sims, J. N., Miele, L., Noubissi, F., Lowe, L., Fonseca, D. D., Alo, R. A., Payton, M., & Tchounwou, P. B. (2019). Health and racial disparity in breast cancer. In A. Ahmad (Ed.), Breast cancer metastasis and drug resistance (pp. 31–49). Springer.

    Chapter  Google Scholar 

  7. Glass, A. G., & Hoover, R. N. (1990). Rising incidence of breast cancer: relationship to stage and receptor status. JNCI: Journal of the National Cancer Institute, 82(8), 693–696.

    Article  CAS  PubMed  Google Scholar 

  8. Li, C. I., Daling, J. R., & Malone, K. E. (2003). Incidence of invasive breast cancer by hormone receptor status from 1992 to 1998. Journal of Clinical Oncology, 21(1), 28–34.

    Article  CAS  PubMed  Google Scholar 

  9. Bigaard, J., Stahlberg, C., Jensen, M. B., Ewertz, M., & Kroman, N. (2012). Breast cancer incidence by estrogen receptor status in Denmark from 1996 to 2007. Breast Cancer Research and Treatment, 136(2), 559–564.

    Article  CAS  PubMed  Google Scholar 

  10. Brédart, A., De Pauw, A., Anota, A., Tüchler, A., Dick, J., Müller, A., Kop, J. L., Rhiem, K., Schmutzler, R., Devilee, P., & Stoppa-Lyonnet, D. (2021). Information needs on breast cancer genetic and non-genetic risk factors in relatives of women with a BRCA1/2 or PALB2 pathogenic variant. The Breast, 60, 38–44.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wright, N., Akinyemiju, T., Subhedar, P., Rida, P., & Aneja, R. (2019). Targeting risk factors for reducing the racially disparate burden in breast cancer. Frontiers in Bioscience-Scholar, 11(1), 136–160.

    Article  Google Scholar 

  12. Wunderle, M., Olmes, G., Nabieva, N., Häberle, L., Jud, S. M., Hein, A., Rauh, C., Hack, C. C., Erber, R., Ekici, A. B., & Hoyer, J. (2018). Risk, prediction and prevention of hereditary breast cancer–large-scale genomic studies in times of big and smart data. Geburtshilfe und Frauenheilkunde, 78(05), 481–492.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dan, V. M., Raveendran, R. S., & Baby, S. (2021). Resistance to intervention: Paclitaxel in breast cancer. Mini Reviews in Medicinal Chemistry, 21(10), 1237–1268.

    CAS  PubMed  Google Scholar 

  14. Shadbad, M. A., Asadzadeh, Z., Hosseinkhani, N., Derakhshani, A., Alizadeh, N., Brunetti, O., Silvestris, N., & Baradaran, B. (2021). A systematic review of the tumor-infiltrating CD8+ T-Cells/PD-L1 axis in high-grade glial tumors: Toward personalized immuno-oncology. Frontiers in Immunology, 12, 734956. https://doi.org/10.3389/fimmu.2021.734956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Howard, F. M., Villamar, D., He, G., Pearson, A. T., & Nanda, R. (2022). The emerging role of immune checkpoint inhibitors for the treatment of breast cancer. Expert Opinion on Investigational Drugs, 31(6), 531–548.

    Article  CAS  PubMed  Google Scholar 

  16. Alizadeh, N., Kazemi, T., Hemmat, N., Jafarlou, M., & Baradaran, B. (2023). The combination of PD-L1 and CTLA-4 suppression significantly decreased the expression levels of cancer stem cell factors in the pancreatic cancer cell line. ImmunoAnalysis, 3, 6. https://doi.org/10.34172/ia.2023.06

    Article  Google Scholar 

  17. Solinas, C., Gombos, A., Latifyan, S., Piccart-Gebhart, M., Kok, M., & Buisseret, L. (2017). Targeting immune checkpoints in breast cancer: an update of early results. ESMO Open, 2(5), e000255.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Janakiram, M., Shah, U. A., Liu, W., Zhao, A., Schoenberg, M. P., & Zang, X. (2017). The third group of the B7-CD 28 immune checkpoint family: HHLA 2, TMIGD 2, B7x, and B7–H3. Immunological Reviews, 276(1), 26–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan, S., Yim, L. Y., Lu, L., Lau, C. S., & Chan, V. S. F. (2014). MicroRNA regulation in systemic lupus erythematosus pathogenesis. Immune Network, 14(3), 138–148.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ni, L., & Dong, C. (2017). New B7 family checkpoints in human cancers. Molecular Cancer Therapeutics, 16(7), 1203–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amir Taghavi, B., Alizadeh, N., Saeedi, H., Karim Ahangar, N., Derakhshani, A., Hajiasgharzadeh, K., Silvestris, N., Baradaran, B., & Brunetti, O. (2022). Targeted therapy of B7 family checkpoints as an innovative approach to overcome cancer therapy resistance: A review from chemotherapy to immunotherapy. Molecules, 27(11), 3545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Janakiram, M., Chinai, J. M., Fineberg, S., Fiser, A., Montagna, C., Medavarapu, R., Castano, E., Jeon, H., Ohaegbulam, K. C., Zhao, R., & Zhao, A. (2015). Expression, clinical significance, and receptor identification of the newest B7 family member HHLA2 ProteinHHLA is the newest immune checkpoint in human cancers. Clinical Cancer Research, 21(10), 2359–2366.

    Article  CAS  PubMed  Google Scholar 

  23. Wouters, M. C., Laumont, C. M., Chen, B., Han, S. J., Matuszewska, K., Potts, K., Boudreau, J. E., & Krawczyk, C. M. (2017). The summit for cancer immunotherapy (Summit4CI), June 26–29, 2016 Halifax, Canada. Springer.

    Book  Google Scholar 

  24. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69(1), 7–34.

    PubMed  Google Scholar 

  25. Mansoori, B., Mohammadi, A., Asadzadeh, Z., Shirjang, S., Minouei, M., AbediGaballu, F., Shajari, N., Kazemi, T., Gjerstorff, M. F., Duijf, P. H., & Baradaran, B. (2019). HMGA2 and Bach-1 cooperate to promote breast cancer cell malignancy. Journal of Cellular Physiology, 234(10), 17714–17726.

    Article  CAS  PubMed  Google Scholar 

  26. Bhatt, R. S., Berjis, A., Konge, J. C., Mahoney, K. M., Klee, A. N., Freeman, S. S., Chen, C. H., Jegede, O. A., Catalano, P. J., Pignon, J. C., & Sticco-Ivins, M. (2021). KIR3DL3 is an inhibitory receptor for HHLA2 that mediates an alternative immunoinhibitory pathway to PD1KIR3DL3 is an immunoinhibitory receptor for HHLA2. Cancer Immunology Research, 9(2), 156–169.

    Article  CAS  PubMed  Google Scholar 

  27. Dolatkhah, K., Alizadeh, N., Mohajjel-Shoja, H., Abdoli Shadbad, M., Hajiasgharzadeh, K., Aghebati-Maleki, L., Baghbanzadeh, A., Hosseinkhani, N., Ahangar, N. K., & Baradaran, B. (2022). B7 immune checkpoint family members as putative therapeutics in autoimmune disease: An updated overview. International Journal of Rheumatic Diseases, 25(3), 259–271. https://doi.org/10.1111/1756-185X.14273

    Article  CAS  PubMed  Google Scholar 

  28. Saunders, D. E., Lawrence, W. D., Christensen, C., Wappler, N. L., Ruan, H., & Deppe, G. (1997). Paclitaxel-induced apoptosis in MCF-7 breast-cancer cells. International Journal of Cancer, 70(2), 214–220.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, L., Zhu, D., Feng, J., Zhou, Y., Wang, Q., Feng, H., Zhang, J., & Jiang, J. (2019). Overexpression of HHLA2 in human clear cell renal cell carcinoma is significantly associated with poor survival of the patients. Cancer Cell International, 19(1), 1–12.

    Article  Google Scholar 

  30. Aborehab, N. M., Elnagar, M. R., & Waly, N. E. (2021). Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line. Journal of Biochemical and Molecular Toxicology, 35(2), e22638.

    Article  CAS  PubMed  Google Scholar 

  31. Quispe-Soto, E. T., & Calaf, G. M. (2016). Effect of curcumin and paclitaxel on breast carcinogenesis. International Journal of Oncology, 49(6), 2569–2577.

    Article  CAS  PubMed  Google Scholar 

  32. Sun, W., Li, S., Tang, G., Sun, S., Luo, Y., Bai, R., Han, L., Jiang, X., Gao, Y., Huang, Z., & Zhang, J. (2021). HHLA2 deficiency inhibits non-small cell lung cancer progression and THP-1 macrophage M2 polarization. Cancer Medicine, 10(15), 5256–5269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Baradaran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavi, B.A., Salehi, M., Mokhtarzadeh, A. et al. Suppression of B7-H7 Enhanced MCF-7 Cancer Cell Line’s Chemosensitivity to Paclitaxel. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01145-2

Keywords

Navigation