Skip to main content
Log in

Identification of Prognostic Genes in Acute Myeloid Leukemia Microenvironment: A Bioinformatic and Experimental Analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) is a lethal hematologic malignancy with a variable prognosis that is highly dependent on the bone marrow microenvironment. Consequently, a better understanding of the AML microenvironment is crucial for early diagnosis, risk stratification, and personalized therapy. In recent years, the role of bioinformatics as a powerful tool in clarifying the complexities of cancer has become more prominent. Gene expression profile and clinical data of 173 AML patients were downloaded from the TCGA database, and the xCell algorithm was applied to calculate the microenvironment score (MS). Then, the correlation of MS with FAB classification, and CALGB cytogenetic risk category was investigated. Differentially expressed genes (DEGs) were identified, and the correlation analysis of DEGs with patient survival was done using univariate cox. The prognostic value of candidate prognostic DEGs was confirmed based on the GEO database. In the last step, real-time PCR was used to compare the expression of the top three prognostic genes between patients and the control group. During TCGA data analysis, 716 DEGs were identified, and survival analysis results showed that 152 DEGs had survival-related changes. In addition, the prognostic value of 31 candidate prognostic genes was confirmed by GEO data analysis. Finally, the expression analysis of FLVCR2, SMO, and CREB5 genes, the most related genes to patients’ survival, was significantly different between patients and control groups. In summary, we identified key microenvironment-related genes that influence the survival of AML patients and may serve as prognostic and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from GEO database (https://www.ncbi.nlm.nih.gov/geo/) and TCGA database (https://portal.gdc.cancer.gov/), which are all publicly available.

References

  1. Mizani, S., Keshavarz, A., Vazifeh Shiran, N., Bashash, D., & Allahbakhshian, F. M. (2022). Expression changes of SIRT1 and FOXO3a significantly correlate with oxidative stress resistance genes in AML patients. Indian Journal of Hematology and Blood Transfusion, 39, 1–10.

    Google Scholar 

  2. Kargar-Sichani, Y., Mohammadi, M. H., Amiri, V., Barzegar, M., Keshavarz, A., Bashash, D., & Farsani, M. A. (2023). Effect of acute myeloid leukemia-derived extracellular vesicles on bone marrow mesenchymal stromal cells: expression of poor prognosis genes. Archives of Medical Research, 54(2), 95–104.

    Article  CAS  PubMed  Google Scholar 

  3. Wu, X., Li, S., Chen, D., Zheng, G., Zhang, Z., Li, Z., Sun, X., Zhao, Q., & Xu, J. (2022). An inflammatory response-related gene signature associated with immune status and prognosis of acute myeloid leukemia. American Journal of Translational Research, 14(7), 4898.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pourrajab, F., Zare-Khormizi, M. R., Hashemi, A. S., & Hekmatimoghaddam, S. (2020). Genetic characterization and risk stratification of acute myeloid leukemia. Cancer Management and Research, 12, 2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Awada, H., Mustafa Ali, M. K., Thapa, B., Awada, H., Seymour, L., Liu, L., Gurnari, C., Kishtagari, A., Wang, E., & Baer, M. R. (2022). A focus on intermediate-risk acute myeloid leukemia: sub-classification updates and therapeutic challenges. Cancers, 14(17), 4166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thakral, D., Gupta, R., & Khan, A. (2022). Leukemic stem cell signatures in acute myeloid leukemia-targeting the guardians with novel approaches. Stem Cell Reviews and Reports, 18, 1–18.

    Article  Google Scholar 

  7. Yao, Y., Li, F., Huang, J., Jin, J., & Wang, H. (2021). Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Experimental Hematology & Oncology, 10(1), 1–19.

    Article  Google Scholar 

  8. Lu, C., Hu, D., Zheng, J., Cao, S., Zhu, J., Chen, X., Huang, S., & Yao, J. (2022). A six-gene risk model based on the immune score reveals prognosis in intermediate-risk acute myeloid leukemia. BioMed Research International, 2022, 4010786.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang, S., Zhang, B., Fan, W., Zhao, Q., Yang, L., Xin, W., & Fu, D. (2019). Identification of prognostic genes in the acute myeloid leukemia microenvironment. Aging (Albany NY), 11(22), 10557.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, J., Uddin, M. N., Hao, J.-P., Chen, R., Xiang, Y.-X., Xiong, D.-Q., & Wu, Y. (2021). Identification of potential novel prognosis-related genes through transcriptome sequencing, bioinformatics analysis, and clinical validation in acute myeloid leukemia. Frontiers in Genetics. https://doi.org/10.3389/fgene.2021.723001

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aran, D., Hu, Z., & Butte, A. J. (2017). xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biology, 18(1), 1–14.

    Article  Google Scholar 

  12. Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), 180–185.

    Article  Google Scholar 

  13. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1–21.

    Article  Google Scholar 

  14. Kolde, R., & Kolde, M. R. (2015). Package ‘pheatmap.’ R Package, 1(7), 790.

    Google Scholar 

  15. Therneau, T. M., & Lumley, T. (2015). Package ‘survival.’ R Package, 128(10), 28–33.

    Google Scholar 

  16. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  17. Ahmadzadeh, A., Mohammadi, M. H., Mezginezhad, F., Nezhad, H. A., Parkhideh, S., Khosravi, M., Khazaei, Z., Adineh, H., & Farsani, M. A. (2018). The expression of the TP53 gene in various classes of acute myeloid leukemia. World Cancer Research Journal, 5, e1178.

    Google Scholar 

  18. Terao, T., & Minami, Y. (2019). Targeting hedgehog (Hh) pathway for the acute myeloid leukemia treatment. Cells, 8(4), 312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, Z., Ye, L., Wang, X., Tu, F., Li, X., & Wang, S.-Y. (2020). Identification of a prognostic gene signature associated with microenvironment in acute myeloid leukemia. Aging (Albany NY), 11(22), 10557–10580.

    Google Scholar 

  20. Yan, H., Qu, J., Cao, W., Liu, Y., Zheng, G., Zhang, E., & Cai, Z. (2019). Identification of prognostic genes in the acute myeloid leukemia immune microenvironment based on TCGA data analysis. Cancer Immunology, Immunotherapy, 68(12), 1971–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pezeshki, S. M. S., Asnafi, A. A., Khosravi, A., Shahjahani, M., Azizidoost, S., & Shahrabi, S. (2018). Vitamin D and its receptor polymorphisms: New possible prognostic biomarkers in leukemias. Oncology Reviews, 12(2), 366.

    PubMed  PubMed Central  Google Scholar 

  22. Takam Kamga, P., Collo, G. D., Resci, F., Bazzoni, R., Mercuri, A., Quaglia, F. M., Tanasi, I., Delfino, P., Visco, C., & Bonifacio, M. (2019). Notch signaling molecules as prognostic biomarkers for acute myeloid leukemia. Cancers., 11(12), 1958.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stevens, A. M., Horton, T. M., Glasser, C. L., Gerbing, R. B., Aplenc, R., Alonzo, T. A., & Redell, M. S. (2022). IL-10 and TNFα are associated with decreased survival in low-risk pediatric acute myeloid leukemia; a children’s oncology group report. Pediatric Hematology and Oncology., 40, 1–12.

    Google Scholar 

  24. Coelho-Silva, J. L., Machado-Neto, J. A., Fernandes, J. C., de Lima, A. S. G., Scheucher, P. S., Rego, E. M., & Traina, F. (2017). IGF signaling predicts outcomes and is a promising target therapy for acute myeloid leukemia. Blood, 130, 3966.

    Google Scholar 

  25. Zheng, J., Zhang, T., Guo, W., Zhou, C., Cui, X., Gao, L., Cai, C., & Xu, Y. (2020). Integrative analysis of multi-omics identified the prognostic biomarkers in acute myelogenous leukemia. Frontiers in Oncology. https://doi.org/10.3389/fonc.2020.591937

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, W., Yi, J.-M., Liu, Y., Chen, C., Zhang, K.-X., Zhou, C., Zhan, H.-E., Zhao, L., Morales, S., & Zhao, X.-L. (2021). CDK6 Is a potential prognostic biomarker in acute myeloid leukemia. Frontiers in Genetics, 11, 600227.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jeng, K.-S., Sheen, I.-S., Leu, C.-M., Tseng, P.-H., & Chang, C.-F. (2020). The role of smoothened in cancer. International Journal of Molecular Sciences, 21(18), 6863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qin, Y. T., Yao, L., Yin, Z., Chen, S., Wang, H., Fan, W. X., Jiang, M., & Hao, J. P. (2020). Expression and significance of shh signaling pathway in bone marrow CD34(+) cells of patients with myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 28(5), 1637–1642.

    PubMed  Google Scholar 

  29. Li, Z., Mao, S., & Jin, J. (2017). Activation of hedgehog pathway in acute myeloid leukemia patients. International Journal of Clinical and Experimental Pathology, 10(8), 8605–8609.

    PubMed  PubMed Central  Google Scholar 

  30. Lemos, T., & Merchant, A. (2022). The hedgehog pathway in hematopoiesis and hematological malignancy. Frontiers in Oncology, 12, 960943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Norsworthy, K. J., By, K., Subramaniam, S., Zhuang, L., Del Valle, P. L., Przepiorka, D., Shen, Y.-L., Sheth, C. M., Liu, C., & Leong, R. (2019). FDA approval summary: glasdegib for newly diagnosed acute myeloid leukemia. Clinical Cancer Research, 25(20), 6021–5.

    Article  CAS  PubMed  Google Scholar 

  32. Shalev, Z., Duffy, S. P., Adema, K. W., Prasad, R., Hussain, N., Willett, B. J., & Tailor, C. S. (2009). Identification of a feline leukemia virus variant that can use THTR1, FLVCR1, and FLVCR2 for infection. Journal of Virology, 83(13), 6706–6716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fiorito, V., Chiabrando, D., Petrillo, S., Bertino, F., & Tolosano, E. (2019). The multifaceted role of heme in cancer. Frontiers in Oncology, 9, 1540.

    Article  PubMed  Google Scholar 

  34. He, S., Deng, Y., Liao, Y., Li, X., Liu, J., & Yao, S. (2017). CREB5 promotes tumor cell invasion and correlates with poor prognosis in epithelial ovarian cancer. Oncology Letters, 14(6), 8156–8161.

    PubMed  PubMed Central  Google Scholar 

  35. Wu, J., Wang, S. T., Zhang, Z. J., Zhou, Q., & Peng, B. G. (2018). CREB5 promotes cell proliferation and correlates with poor prognosis in hepatocellular carcinoma. International Journal of Clinical and Experimental Pathology, 11(10), 4908–4916.

    PubMed  PubMed Central  Google Scholar 

  36. Wang, S., Qiu, J., Liu, L., Su, C., Qi, L., Huang, C., Chen, X., Zhang, Y., Ye, Y., Ding, Y., Liang, L., & Liao, W. (2020). CREB5 promotes invasiveness and metastasis in colorectal cancer by directly activating MET. J Exp Clin Cancer Res., 39(1), 168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Shahid Beheshti University of Medical Sciences (Tehran, Iran) for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Allahbakhshian Farsani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

Written consent was obtained from all participants, including patient and control individuals. The local ethics committee approved the study under the code IR.SBMU.RETECH.REC.1401.001.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz, A., Navidinia, A.A., Kuhestani Dehaghi, B.H. et al. Identification of Prognostic Genes in Acute Myeloid Leukemia Microenvironment: A Bioinformatic and Experimental Analysis. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01128-3

Keywords

Navigation