Skip to main content

Advertisement

Log in

Computational Analysis of Non-synonymous SNPs in ATM Kinase: Structural Insights, Functional Implications, and Inhibitor Discovery

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Ataxia telangiectasia-mutated (ATM) protein kinase, a key player in cellular integrity regulation, is known for its role in DNA damage response. This study investigates the broader impact of ATM on cellular processes and potential clinical manifestations arising from mutations, aiming to expand our understanding of ATM’s diverse functions beyond conventional roles. The research employs a comprehensive set of computational techniques for a thorough analysis of ATM mutations. The mutation data are curated from dbSNP and HuVarBase databases. A meticulous assessment is conducted, considering factors such as deleterious effects, protein stability, oncogenic potential, and biophysical characteristics of the identified mutations. Conservation analysis, utilizing diverse computational tools, provides insights into the evolutionary significance of these mutations. Molecular docking and dynamic simulation analyses are carried out for selected mutations, investigating their interactions with Y2080D, AZD0156, and quercetin inhibitors to gauge potential therapeutic implications. Among the 419 mutations scrutinized, five (V1913C, Y2080D, L2656P, C2770G, and C2930G) are identified as both disease causing and protein destabilizing. The study reveals the oncogenic potential of these mutations, supported by findings from the COSMIC database. Notably, Y2080D is associated with haematopoietic and lymphoid cancers, while C2770G shows a correlation with squamous cell carcinomas. Molecular docking and dynamic simulation analyses highlight strong binding affinities of quercetin for Y2080D and AZD0156 for C2770G, suggesting potential therapeutic options. In summary, this computational analysis provides a comprehensive understanding of ATM mutations, revealing their potential implications in cellular integrity and cancer development. The study underscores the significance of Y2080D and C2770G mutations, offering valuable insights for future precision medicine targeting-specific ATM. Despite informative computational analyses, a significant research gap exists, necessitating essential in vitro and in vivo studies to validate the predicted effects of ATM mutations on protein structure and function.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ATR:

ATM- and Rad3-related

ATM:

Ataxia telangiectasia mutated

BRCA1:

Breast cancer type 1 susceptibility protein

c-Abl:

Abelson tyrosine-protein kinase 1

Chk1:

Checkpoint kinase 1

Chk2:

Checkpoint kinase 2

ConSurf:

Conservation of amino acid residues in proteins

DNA:

Deoxyribonucleic acid

DNA-PKc:

DNA-dependent protein kinase catalytic subunit

DSB:

Double-stranded break

FANCD2:

Fanconi anemia group D2 protein

FATHMM-cancer:

Functional analysis through hidden Markov models

IR:

Ionizing radiation

MetaSNP:

Metastability-based SNP predictor

Mdm2:

Murine double minute 2

MDS:

Molecular dynamics simulation

NbsS1:

Nijmegen breakage syndrome 1

p53:

Tumour protein 53

PIKK:

Phosphatidylinositol 3-kinase-related kinase

Provean:

Protein variation effect analyzer

Pmut:

Pathogenicity prediction software for missense variants

Rad51:

DNA repair protein RAD51 homolog 1

SDM2:

Site-directed mutator 2

SNPs:

Single-nucleotide polymorphisms

mCSM:

Mutations of computational saturation mutagenesis

PyMOL:

Python molecular graphics system

References

  1. Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature, 461(7267), 1071–1078. https://doi.org/10.1038/nature08467

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Roos, W. P., Thomas, A. D., & Kaina, B. (2016). DNA damage and the balance between survival and death in cancer biology. Nature Reviews Cancer, 16(1), 20–33. https://doi.org/10.1038/nrc.2015.2

    Article  CAS  PubMed  Google Scholar 

  3. O’Connor, M. J. (2015). Targeting the DNA damage response in cancer. Molecular Cell, 60(4), 547–560. https://doi.org/10.1016/j.molcel.2015.10.040

    Article  CAS  PubMed  Google Scholar 

  4. Savitsky, K., Sfez, S., Tagle, D. A., Ziv, Y., Sartiel, A., Collins, F. S., Shiloh, Y., & Rotman, G. (1995). The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Human Molecular Genetics, 4(11), 2025–2032. https://doi.org/10.1093/hmg/4.11.2025

    Article  CAS  PubMed  Google Scholar 

  5. Bakkenist, C. J., & Kastan, M. B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421(6922), 499–506. https://doi.org/10.1038/nature01368

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Mochan, T. A., Venere, M., DiTullio, R. A., & Halazonetis, T. D. (2003). 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Research, 63(24), 8586 LP–8591.

    Google Scholar 

  7. Wang, X., Chu, H., Lv, M., Zhang, Z., Qiu, S., Liu, H., Shen, X., Wang, W., & Cai, G. (2016). Structure of the intact ATM/Tel1 kinase. Nature Communications. https://doi.org/10.1038/ncomms11655

  8. Baretić, D., Pollard, H. K., Fisher, D. I., Johnson, C. M., Santhanam, B., Truman, C. M., Kouba, T., Fersht, A. R., Phillips, C., & Williams, R. L. (2017). Structures of closed and open conformations of dimeric human ATM. Science Advances, 3(5), e1700933. https://doi.org/10.1126/sciadv.1700933

  9. Yang, H., Jiang, X., Li, B., Yang, H. J., Miller, M., Yang, A., Dhar, A., & Pavletich, N. P. (2017). Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature, 552(7685), 368–373. https://doi.org/10.1038/nature25023

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Yang, H., Rudge, D. G., Koos, J. D., Vaidialingam, B., Yang, H. J., & Pavletich, N. P. (2013). MTOR kinase structure, mechanism and regulation. Nature, 497(7448), 217–223. https://doi.org/10.1038/nature12122

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Putti, S., Giovinazzo, A., Merolle, M., Falchetti, M. L., & Pellegrini, M. (2021, November 1). ATM kinase dead: From ataxia telangiectasia syndrome to cancer. Cancers. https://doi.org/10.3390/cancers13215498

  12. Smith, J., Tho, L. M., Xu, N., & Gillespie, D. A. (2010). The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Advances in Cancer Research, 108, 73–112. https://doi.org/10.1016/B978-0-12-380888-2.00003-0

    Article  CAS  PubMed  Google Scholar 

  13. Menolfi, D., & Zha, S. (2020). ATM, ATR and DNA-PKcs kinases—The lessons from the mouse models: Inhibition ≠ deletion. Cell & Bioscience, 10(1), 8. https://doi.org/10.1186/s13578-020-0376-x

    Article  CAS  Google Scholar 

  14. Dash, R., & Munni, Y. A. (2020). Computational SNP analysis and molecular simulation revealed the most computational SNP analysis and molecular simulation revealed the most deleterious missense variants in the NBD1 domain of human ABCA1 transporter. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21207606

    Article  PubMed  PubMed Central  Google Scholar 

  15. Panchal, N. K., Bhale, A., Verma, V. K., & Beevi, S. S. (2020). Computational and molecular dynamics simulation approach to analyze the impact of XPD gene mutation on protein stability and function. Molecular Simulation, 46(15), 1200–1219. https://doi.org/10.1080/08927022.2020.1810852

    Article  CAS  Google Scholar 

  16. Panchal, N. K., Mohanty, S., & Prince, S. E. (2023). Computational insights into NIMA-related kinase 6: Unraveling mutational effects on structure and function. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-023-04910-0

    Article  PubMed  Google Scholar 

  17. Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2012). In silico prediction of a disease-associated STIL mutant and its affect on the recruitment of centromere protein J (CENPJ). FEBS Open Bio, 2, 285–293. https://doi.org/10.1016/j.fob.2012.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Capriotti, E., Altman, R. B., & Bromberg, Y. (2013). Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics, 14(Suppl 3), S2. https://doi.org/10.1186/1471-2164-14-s3-s2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choi, Y., & Chan, A. P. (2015). PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745–2747. https://doi.org/10.1093/bioinformatics/btv195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. López-Ferrando, V., Gazzo, A., De La Cruz, X., Orozco, M., & Gelpí, J. L. (2017). PMut: A web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Research, 45(W1), W222–W228. https://doi.org/10.1093/nar/gkx313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014). MCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics, 30(3), 335–342. https://doi.org/10.1093/bioinformatics/btt691

    Article  CAS  PubMed  Google Scholar 

  22. Worth, C. L., Preissner, R., & Blundell, T. L. (2011). SDM—A server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Research, 39(SUPPL. 2), 215–222. https://doi.org/10.1093/nar/gkr363

    Article  CAS  Google Scholar 

  23. Chen, C. W., Lin, M. H., Liao, C. C., Chang, H. P., & Chu, Y. W. (2020). iStable 2.0: Predicting protein thermal stability changes by integrating various characteristic modules. Computational and Structural Biotechnology Journal, 18, 622–630. https://doi.org/10.1016/j.csbj.2020.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34(WEB. SERV. ISS.), 239–242. https://doi.org/10.1093/nar/gkl190

    Article  CAS  Google Scholar 

  25. Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(SUPPL. 2), 306–310. https://doi.org/10.1093/nar/gki375

    Article  CAS  Google Scholar 

  26. Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810

    Article  CAS  PubMed  Google Scholar 

  27. Rogers, M. F., Shihab, H. A., Mort, M., Cooper, D. N., Gaunt, T. R., & Campbell, C. (2018). FATHMM-XF: Accurate prediction of pathogenic point mutations via extended features. Bioinformatics, 34(3), 511–513. https://doi.org/10.1093/bioinformatics/btx536

    Article  CAS  PubMed  Google Scholar 

  28. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/nar/gkw408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Celniker, G., Nimrod, G., Ashkenazy, H., Glaser, F., Martz, E., Mayrose, I., Pupko, T., & Ben-Tal, N. (2013). ConSurf: Using evolutionary data to raise testable hypotheses about protein function. Israel Journal of Chemistry, 53(3–4), 199–206. https://doi.org/10.1002/ijch.201200096

    Article  CAS  Google Scholar 

  30. Hemalatha, K., & Girija, K. (2016). Evaluation of drug candidature of some benzimidazole derivatives as biotin carboxylase inhibitors: Molecular docking and insilico studies. Asian Journal of Research in Pharmaceutical Science, 6(1), 15–20. https://doi.org/10.5958/2231-5659.2016.00002.3

    Article  Google Scholar 

  31. Seeliger, D., & De Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Shiloh, Y., & Ziv, Y. (2013). The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more. Nature Reviews Molecular Cell Biology, 14(4), 197–210. https://doi.org/10.1038/nrm3546

    Article  CAS  PubMed  Google Scholar 

  33. Lee, J.-H., & Paull, T. T. (2007). Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene, 26(56), 7741–7748. https://doi.org/10.1038/sj.onc.1210872

    Article  CAS  PubMed  Google Scholar 

  34. Maréchal, A., & Zou, L. (2013). DNA damage sensing by the ATM and ATR kinases. Cold Spring Harbor Perspectives in Biology, 5(9), a012716. https://doi.org/10.1101/cshperspect.a012716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Solayman, M., Saleh, M. A., Paul, S., Khalil, M. I., & Gan, S. H. (2017). In silico analysis of nonsynonymous single nucleotide polymorphisms of the human adiponectin receptor 2 (ADIPOR2) gene. Computational Biology and Chemistry, 68, 175–185. https://doi.org/10.1016/j.compbiolchem.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  36. Jia, P., & Zhao, Z. (2017). Impacts of somatic mutations on gene expression: An association perspective. Briefings in Bioinformatics, 18(3), 413–425. https://doi.org/10.1093/bib/bbw037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Vellore Institute of Technology, Vellore, India for providing the necessary facilities to carry out this work.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

Nagesh Kishan Panchal: idea for the article, literature survey, formal analysis, investigation, manuscript writing. Poorva Samdani: formal analysis, manuscript writing. Tiasa Sengupta: formal analysis, manuscript writing. Sabina Evan Prince: project administration, idea for the article, formal analysis, investigation, manuscript writing.

Corresponding author

Correspondence to Sabina Evan Prince.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest for this work.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable: no human/animal subjects were involved in study.

Consent to Publish

Not applicable: no human/animal subjects were involved in study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 110 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchal, N.K., Samdani, P., Sengupta, T. et al. Computational Analysis of Non-synonymous SNPs in ATM Kinase: Structural Insights, Functional Implications, and Inhibitor Discovery. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01120-x

Keywords

Navigation