Skip to main content

Advertisement

Log in

The Impact of microRNA SNPs on Breast Cancer: Potential Biomarkers for Disease Detection

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Breast cancer is considered a significant health concern worldwide, with genetic predisposition playing a critical role in its etiology. Single nucleotide polymorphisms (SNPs), particularly those within the 3' untranslated regions (3'UTRs) of target genes, are emerging as key factors in breast cancer susceptibility. Specifically, miRNAs have been recognized as possible novel approach for biomarkers discovery for both prognosis and diagnosis due to their direct association with cancer progression. Regional disparities in breast cancer incidence underscore the need for precise interventions, considering socio-cultural and economic factors. This review explores into the differential effects of SNP-miRNA interactions on breast cancer risk, emphasizing both risk-enhancing and protective associations across diverse populations. Furthermore, it explores the clinical implications of these findings, highlighting the potential of personalized approaches in breast cancer management. Additionally, it reviews the evolving therapeutic prospect of microRNAs (miRNAs), extending beyond cancer therapeutics to encompass various diseases, indicative of their versatility as therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

SNPs:

Single Nucleotides Polymorphism

SYK:

Spleen Tyrosine Kinase

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA a Cancer Journal for Clinicians, 68, 394–424.

    Article  PubMed  Google Scholar 

  2. Economopoulou, P., Dimitriadis, G., & Psyrri, A. (2015). Beyond BRCA: New hereditary breast cancer susceptibility genes. Cancer Treatment Reviews, 41, 1–8.

    Article  CAS  PubMed  Google Scholar 

  3. Michailidou, K., Lindström, S., Dennis, J., Beesley, J., Hui, S., Kar, S., & Humphreys, K. (2017). Association analysis identifies 65 new breast cancer risk loci. Nature, 551, 92–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mavaddat, N., Mavaddat, N., Michailidou, K., Dennis, J., Lush, M., Fachal, L., Lee, A., & MacInnis, R. J. (2019). Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. American Journal of Human Genetics, 104, 21–34.

    Article  CAS  PubMed  Google Scholar 

  5. Jurj, M. A., Buse, M., Zimta, A. A., Paradiso, A., Korban, S. S., Pop, L. A., & Berindan-Neagoe, I. (2020). Critical analysis of genome-wide association studies: Triple negative breast cancer quae exempli causa. International Journal of Molecular Sciences, 21(16), 5835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Auton, A., & Salcedo, T. (2015). The 1000 genomes project. Assessing rare variation in complex traits: Design and analysis of genetic studies (pp. 71–85). Springer.

    Chapter  Google Scholar 

  7. Mavaddat, N., Pharoah, P. D., Michailidou, K., Tyrer, J., Brook, M. N., Bolla, M. K., Wang, Q., Dennis, J., Dunning, A. M., Shah, M., & Haiman, C. A. (2015). Prediction of breast cancer risk based on profiling with common genetic variants. Journal of National Cancer Institute, 107, djv036.

    Article  Google Scholar 

  8. Hausser, J., & Zavolan, M. (2014). Identification and consequences of miRNA-target interactions–beyond repression of gene expression. Nature Reviews Genetics, 15(9), 599–612. https://doi.org/10.1038/nrg3765

    Article  CAS  PubMed  Google Scholar 

  9. Iqbal, M. U. N., Yaqoob, T., Ali, S. A., & Khan, T. A. (2019). A functional polymorphism (rs6265, G>A) of brain-derived neurotrophic factor gene and breast cancer: An association study. Breast Cancer, 13, 1178223419844977. https://doi.org/10.1177/1178223419844977

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chhikara, B. S., & Parang, K. (2023). Global cancer statistics 2022: The trends projection analysis. Chemical Biology Letters, 10(1), 451–451.

    Google Scholar 

  11. Yardim-Akaydin, S., Karahalil, B., & Baytas, S. N. (2022). New therapy strategies in the management of breast cancer. Drug Discovery Today, 27(6), 1755–1762.

    Article  CAS  PubMed  Google Scholar 

  12. Sethi, S., Sethi, S., & Bluth, M. H. (2018). Clinical implication of microRNAs in molecular pathology: An update for 2018. Clinics in Laboratory Medicine, 38(2), 237–251. https://doi.org/10.1016/j.cll.2018.02.003

    Article  PubMed  Google Scholar 

  13. Wendt, C., & Margolin, S. (2019). Identifying breast cancer susceptibility genes–a review of the genetic background in familial breast cancer. Acta Oncologica, 58(2), 135–146.

    Article  CAS  PubMed  Google Scholar 

  14. Couto, E., & Hemminki, K. (2007). Estimates of heritable and environmental components of familial breast cancer using family history information. British Journal of Cancer, 96, 1740–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Easton, D. F., Pharoah, P. D., Antoniou, A. C., Tischkowitz, M., Tavtigian, S. V., Nathanson, K. L., & Foulkes, W. D. (2015). Gene-panel sequencing and the prediction of breast-cancer risk. New England Journal of Medicine, 372(23), 2243–2257.

    Article  CAS  PubMed  Google Scholar 

  16. Renwick, A., Thompson, D., Seal, S., Kelly, P., Chagtai, T., Ahmed, M., & Rahman, N. (2006). ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nature Genetics, 38, 873–875.

    Article  CAS  PubMed  Google Scholar 

  17. Casadei, S., Norquist, B. M., Walsh, T., Stray, S., Mandell, J. B., Lee, M. K., Stamatoyannopoulos, J. A., & King, M. C. (2011). Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Research, 71(6), 2222–2229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cybulski, C., Carrot-Zhang, J., Kluźniak, W., Rivera, B., Kashyap, A., Wokołorczyk, D., & Akbari, M. R. (2015). Germline RECQL mutations are associated with breast cancer susceptibility. Nature Genetics, 47, 643–646.

    Article  CAS  PubMed  Google Scholar 

  19. Catalanotto, C., Cogoni, C., & Zardo, G. (2016). MicroRNA in control of gene expression: An overview of nuclear functions. International Journal of Molecular Sciences, 17, 1712.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Loh, H. Y., Norman, B. P., Lai, K. S., Rahman, N. M. A. N. A., Alitheen, N. B. M., & Osman, M. A. (2019). The regulatory role of miRNAs in breast cancer. International Journal of Molecular Sciences, 20(19), 4940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hinske, L. C., França, G. S., Torres, H. A., Ohara, D. T., Lopes-Ramos, C. M., Heyn, J., & Galante, P. A. (2014). miRIAD–integrating microRNA inter- and intragenic data. Database, 2014, bau099.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu, B., Shyr, Y., Cai, J., & Liu, Q. (2019). Interplay between miRNAs and host genes and their role in cancer. Briefings in Functional Genomics, 18, 255–266.

    Article  CAS  PubMed Central  Google Scholar 

  23. Chang, T. C., & Mendell, J. T. (2007). microRNAs in vertebrate physiology and human disease. Annual Review of Genomics and Human Genetics, 8, 215–239. https://doi.org/10.1146/annurev.genom.8.080706.092351

    Article  CAS  PubMed  Google Scholar 

  24. O’Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology, 9, 402. https://doi.org/10.3389/fendo.2018.00402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hannafon, B. N., Carpenter, K. J., Berry, W. L., Janknecht, R., Dooley, W. C., & Ding, W. Q. (2015). Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Molecular Cancer, 14, 133. https://doi.org/10.1186/s12943-015-0400-7s

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jiang, Y., Chen, J., Wu, J., Hu, Z., Qin, Z., Liu, X. A., & Shen, H. (2013). Evaluation of genetic variants in microRNA biosynthesis genes and risk of breast cancer in Chinese women. International Journal of Cancer, 133(9), 2216–2224. https://doi.org/10.1002/ijc.28237

    Article  CAS  PubMed  Google Scholar 

  27. Leaderer, D., Hoffman, A. E., Zheng, T., Fu, A., Weidhaas, J., Paranjape, T., & Zhu, Y. (2011). Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. International Journal of Molecular Epidemiology and Genetics, 2(1), 9.

    CAS  PubMed  Google Scholar 

  28. Cho, S. H., Ko, J. J., Kim, J. O., Jeon, Y. J., Yoo, J. K., Oh, J., Oh, D., Kim, J. W., & Kim, N. K. (2015). 3’-UTR polymorphisms in the MiRNA machinery genes DROSHA, DICER1, RAN, and XPO5 are associated with colorectal cancer risk in a Korean population. PLoS ONE, 10(7), e0131125. https://doi.org/10.1371/journal.pone.0131125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Osuch-Wojcikiewicz, E., Bruzgielewicz, A., Niemczyk, K., Sieniawska-Buccella, O., Nowak, A., Walczak, A., & Majsterek, I. (2015). Association of polymorphic variants of miRNA processing genes with larynx cancer risk in a polish population. Biomed Research International, 2015, 298378. https://doi.org/10.1155/2015/298378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bermisheva, M. A., Takhirova, Z. R., Gilyazova, I. R., & Khusnutdinova, E. K. (2018). MicroRNA biogenesis pathway gene polymorphisms are associated with breast cancer risk. Russian Journal of Genetics (Translation of Genetika (Moscow, Russian Federation)), 54(5), 568–575. https://doi.org/10.1134/S1022795418040051

    Article  CAS  Google Scholar 

  31. Fawzy, M. S., Toraih, E. A., Alelwani, W., Kattan, S. W., Alnajeebi, A. M., & Hassan, R. (2020). The prognostic value of microRNA-biogenesis genes Argonaute 1 and 2 variants in breast cancer patients. American Journal of Translational Research, 12(5), 1994–2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cao, J., Luo, C., Yan, R., Peng, R., Wang, K., Wang, P., & Song, C. (2016). rs15869 at miRNA binding site in BRCA2 is associated with breast cancer susceptibility. Medical Oncology, 33(12), 135. https://doi.org/10.1007/s12032-016-0849-2

    Article  CAS  PubMed  Google Scholar 

  33. Sung, H., Lee, K. M., Choi, J. Y., Han, S., Lee, J. Y., Li, L., Park, S. K., Yoo, K. Y., Noh, D. Y., Ahn, S. H., & Kang, D. (2011). Common genetic polymorphisms of microRNA biogenesis pathway genes and risk of breast cancer: A case–control study in Korea. Breast Cancer Research and Treatment, 130(3), 939–951. https://doi.org/10.1186/1471-2407-12-195

    Article  CAS  PubMed  Google Scholar 

  34. Shu, X., Long, J., Cai, Q., Kweon, S. S., Choi, J. Y., Kubo, M., Park, S. K., Bolla, M. K., Dennis, J., Wang, Q., & Yang, Y. (2020). Identification of novel breast cancer susceptibility loci in meta-analyses conducted among Asian and European descendants. Nature Communications, 11(1), 1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69(1), 7–34.

    PubMed  Google Scholar 

  36. Devericks, E. N., Carson, M. S., McCullough, L. E., Coleman, M. F., & Hursting, S. D. (2022). The obesity-breast cancer link: A multidisciplinary perspective. Cancer Metastasis Reviews. https://doi.org/10.1007/s10555-022-10043-5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Daly, M. E., Singh, N., Ismaila, N., Antonoff, M. B., Arenberg, D. A., Bradley, J., & Simone, C. B. (2022). Management of stage III NonSmall-cell lung cancer: ASCO guideline. Journal of Clinical Oncology, 40(12), 1356–1384.

    Article  PubMed  Google Scholar 

  38. Mathur, P., Sathishkumar, K., Chaturvedi, M., Das, P., Sudarshan, K. L., Santhappan, S., Nallasamy, V., John, A., Narasimhan, S., Roselind, F. S., ICMR-NCDIR-NCRP Investigator Group. (2020). Cancer statistics, 2020: Report from national cancer registry programme, India. JCO Global Oncology, 6, 1063–1075.

    Article  PubMed  Google Scholar 

  39. Barathe, P. C., Haridas, H. T., Soni, P., Kudiya, K. K., Krishnan, J. B., Dhyani, V. S., Rajendran, A., Sirur, A. J., & Pundir, P. (2022). Cost of breast cancer diagnosis and treatment in India: a scoping review protocol. British Medical Journal Open, 12(3), e057008.

    Google Scholar 

  40. Xia, C., Dong, X., Li, H., Cao, M., Sun, D., He, S., Yang, F., Yan, X., Zhang, S., Li, N., & Chen, W. (2022). Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chinese Medical Journal (England), 135(5), 584–590.

    Article  Google Scholar 

  41. Zhang, S., Sun, K., Zheng, R., Zeng, H., Wang, S., Chen, R., Wei, W., & He, J. (2021). Cancer incidence and mortality in China 2015. Journal of the National Cancer Center, 1(1), 2–11.

    Article  CAS  Google Scholar 

  42. Chakraborty, A. R., Sharma, G., Sharma, B. K., & Sarkar, S. S. L. (2018). The novel strategies for next-generation cancer treatment: miRNA combined with chemotherapeutic agents for the treatment of cancer. Oncotarget, 9, 10164–10174.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bose, S. M., & Kaushik, R. (2022). Breast cancer scenario in India. Breast cancer (pp. 1–21). Springer.

    Google Scholar 

  44. Brendle, A., Lei, H., Brandt, A., Johansson, R., Enquist, K., Henriksson, R., Hemminki, K., Lenner, P., & Försti, A. (2008). Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis, 29, 1394–1399.

    Article  CAS  PubMed  Google Scholar 

  45. Tchatchou, S., Jung, A., Hemminki, K., Sutter, C., Wappenschmidt, B., Bugert, P., & Burwinkel, B. (2009). A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis, 30(1), 59–64. https://doi.org/10.1093/carcin/bgn253

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, L., Liu, Y., Song, F., Zheng, H., Hu, L., Lu, H., & Chen, K. (2011). Functional SNP in the microRNA-367 binding site in the 3′UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 13653–13658. https://doi.org/10.1073/pnas.1103360108

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zheng, H., Song, F., Zhang, L., Yang, D., Ji, P., Wang, Y., & Chen, K. (2011). Genetic variants at the miR-124 binding site on the cytoskeleton-organizing IQGAP1 gene confer differential predisposition to breast cancer. International Journal of Oncology, 38(4), 1153–1161. https://doi.org/10.3892/ijo.2011.940

    Article  CAS  PubMed  Google Scholar 

  48. Jiang, L., Deng, J., Zhu, X., Zheng, J., You, Y., Li, N., & Zhou, Y. (2012). CD44 rs13347 C>T polymorphism predicts breast cancer risk and prognosis in Chinese populations. Breast Cancer Research, 14(4), R105. https://doi.org/10.1186/bcr3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Teo, M. T., Landi, D., Taylor, C. F., Elliott, F., Vaslin, L., Cox, D. G., & Kiltie, A. E. (2012). The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis, 33(3), 581–586. https://doi.org/10.1093/carcin/bgr300

    Article  CAS  PubMed  Google Scholar 

  50. Guan, X., Liu, H., Ju, J., Li, Y., Li, P., Wang, L. E., Brewster, A. M., Buchholz, T. A., Arun, B. K., Wei, Q., & Liu, Z. (2015). Genetic variant rs16430 6bp> 0bp at the microRNA-binding site in TYMS and risk of sporadic breast cancer risk in non-hispanic white women aged≤ 55 years. Molecular Carcinogenesis, 54(4), 281–290.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, Q., Jiang, Y., Yin, W., Wang, Y., & Lu, J. (2016). Single-nucleotide polymorphism in microRNA-binding site of SULF1 target gene as a protective factor against the susceptibility to breast cancer: a case-control study. OncoTargets and Therapy. https://doi.org/10.2147/OTT.S102433

    Article  PubMed  PubMed Central  Google Scholar 

  52. Faryal, R., Ishfaq, M., Hayat, T., Mahjabeen, I., & Kayani, M. A. (2016). Novel SYK gene variations and changes in binding sites of miRs in breast cancer patients. Cancer Biomarkers, 16(3), 319–326. https://doi.org/10.3233/CBM-160569

    Article  CAS  PubMed  Google Scholar 

  53. Morales, S., Gulppi, F., Gonzalez-Hormazabal, P., Fernandez-Ramires, R., Bravo, T., Reyes, J. M., Gomez, F., Waugh, E., & Jara, L. (2016). Association of single nucleotide polymorphisms in Pre-miR-27a, Pre-miR-196a2, Pre-miR-423, miR-608 and Pre-miR-618 with breast cancer susceptibility in a South American population. BMC Genetics, 17, 1–10.

    Article  Google Scholar 

  54. Wang, J., Wang, Q., Liu, H., Shao, Na., Tan, B., Zhang, G., Wang, K., Jia, Y., Ma, W., Wang, N., & Cheng, Y. (2012). The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: A meta-analysis of 32 studies. Mutagenesis, 27(6), 779–788. https://doi.org/10.1093/mutage/ges052

    Article  CAS  PubMed  Google Scholar 

  55. Huynh, L. H., Bui, P. T. K., Nguyen, T. T. N., & Nguyen, H. T. (2017). Developing a high resolution melting method for genotyping and predicting association of SNP rs353291 with breast cancer in the Vietnamese population. Biomedical Research and Therapy, 4(12), 1812–1831.

    Article  Google Scholar 

  56. Chen, J., Jiang, Y., Zhou, J., Liu, S., Qin, N., Du, J., Jin, G., Hu, Z., Ma, H., Shen, H., & Dai, J. (2018). Evaluation of CpG-SNPs in miRNA promoters and risk of breast cancer. Gene, 651, 1–8.

    Article  CAS  PubMed  Google Scholar 

  57. Pirooz, H. J., Jafari, N., Rastegari, M., Fathi-Roudsari, M., Tasharrofi, N., Shokri, G., & Kouhkan, F. (2018). Functional SNP in microRNA-491-5p binding site of MMP9 3′-UTR affects cancer susceptibility. Journal of Cellular Biochemistry, 119(7), 5126–5134. https://doi.org/10.1002/jcb.26471

    Article  CAS  PubMed  Google Scholar 

  58. Fukuura, K., Inoue, Y., Miyajima, C., Watanabe, S., Tokugawa, M., Morishita, D., & Hayashi, H. (2019). The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21. Journal of Biological Chemistry, 294, 16429–16439. https://doi.org/10.1074/jbc.RA119.009006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bahreini, F., Rayzan, E., & Rezaei, N. (2021). microRNA-related single-nucleotide polymorphisms and breast cancer. Journal of Cellular Physiology, 236(3), 1593–1605.

    Article  CAS  PubMed  Google Scholar 

  60. Siasi, E., & Solimani, M. (2020). Associations of single nucleotide polymorphism in miR-146a gene with susceptibility to breast cancer in the Iranian female. Asian Pacific Journal of Cancer Prevention, 21(6), 1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, Y., Gui, Y. F., Liao, W. Y., Zhang, Y. Q., Zhang, X. B., Huang, Y. P., Wu, F. M., Huang, Z., & Lu, Y. F. (2021). Association between miR-27a rs895819 polymorphism and breast cancer susceptibility: Evidence based on 6118 cases and 7042 controls. Medicine, 100(2), e23834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wynendaele, J., Bohnke, A., Leucci, E., Nielsen, S. J., Lambertz, I., Hammer, S., & Bartel, F. (2010). An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Research, 70(23), 9641–9649. https://doi.org/10.1158/0008-5472.CAN-10-0527

    Article  CAS  PubMed  Google Scholar 

  63. Yasmeen, N., Kumar, V., & Shaikh, K. D. (2021). Impact of MicroRNA polymorphisms on breast cancer susceptibility. Genetic polymorphism and cancer susceptibility (pp. 53–77). Springer.

    Chapter  Google Scholar 

  64. Hammond, S. M. (2015). An overview of microRNAs. Advanced Drug Delivery Reviews, 87, 3–14. https://doi.org/10.1016/j.addr.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rajman, M., & Schratt, G. (2017). MicroRNAs in neural development: From master regulators to finetuners. Development, 144(13), 2310–2322. https://doi.org/10.1242/dev.144337

    Article  CAS  PubMed  Google Scholar 

  66. Bensen, J. T., Graff, M., Young, K. L., Sethupathy, P., Parker, J., Pecot, C. V., & Olshan, A. F. (2018). A survey of microRNA single nucleotide polymorphisms identifies novel breast cancer susceptibility loci in a case-control, population-based study of African American women. Breast Cancer Research, 20(1), 45. https://doi.org/10.1186/s13058-018-0964-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kwok, G. T., Zhao, J. T., Weiss, J., Mugridge, N., Brahmbhatt, H., MacDiarmid, J. A., Robinson, B. G., & Sidhu, S. B. (2017). Translational applications of microRNAs in cancer, and therapeutic implications. Non-Coding RNA Research, 2(3–4), 143–150. https://doi.org/10.1016/j.ncrna.2017.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rooij, E., Purcell, A. L., & Levin, A. A. (2012). Developing microRNA therapeutics. Circulation Research, 110(3), 496–507. https://doi.org/10.1161/CIRCRESAHA.111.247916

    Article  CAS  PubMed  Google Scholar 

  69. Yan, L. X., Wu, Q. N., Zhang, Y., Li, Y. Y., Liao, D. Z., Hou, J. H., Fu, J., Zeng, M. S., Yun, J. P., Wu, Q. L., Zeng, Y. X., & Shao, J. Y. (2011). Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Research, 13(1), R2. https://doi.org/10.1186/bcr2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ishida, M., & Selaru, F. M. (2013). miRNA-based therapeutic strategies. Current Pathobiology Reports, 1, 63–70.

    Article  Google Scholar 

  71. Kaboli, P. J., Rahmat, A., Ismail, P., & Ling, K. H. (2015). MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacological research, 97, 104–121.

    Article  CAS  PubMed  Google Scholar 

  72. Tan, W., Liu, B., Qu, S., Liang, G., Luo, W., & Gong, C. (2018). MicroRNAs and cancer: Key paradigms in molecular therapy. Oncology Letters, 15, 2735–2742.

    PubMed  Google Scholar 

  73. Rahman, M. M., Brane, A. C., & Tollefsbol, T. O. (2019). MicroRNAs and epigenetics strategies to reverse breast cancer. Cells, 8, 1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liang, A. L., Zhang, T. T., Zhou, N., Wu, C. Y., Lin, M. H., & Liu, Y. J. (2016). MiRNA-10b sponge: An anti-breast cancer study in vitro. Oncology Reports, 35, 1950–1958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhimanyu Kumar Jha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Mathur, R. & Jha, A.K. The Impact of microRNA SNPs on Breast Cancer: Potential Biomarkers for Disease Detection. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01113-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01113-w

Keywords

Navigation