Skip to main content
Log in

Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer Cells

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Prostate cancer incidences are rising worldwide at an alarming rate. Drug resistance and relapse are two major challenges in the treatment of prostate cancer. Therefore, new multimodal, safe, and effective therapeutic agents are urgently required which could effectively mitigate the menace of tumor recurrence and chemo-resistance. Plant-derived products are increasingly being utilized due to their antioxidant, antibacterial, and anti-tumor potential. In the current study, 3-acetyl-11-keto-β-boswellic acid, a triterpenoid isolated from plant Boswellia, was utilized to ascertain its chemotherapeutic potential against human prostate cancer cells. Various in vitro assays including cell viability, nuclear staining, mitochondria potential, reactive oxygen species (ROS) generation, and quantification of apoptosis, were performed for the evaluation of the cytotoxic potential of AKBA. We observed that AKBA (10–50 µM) dose-dependently suppressed cell proliferation and caused programmed cell death in PC3 cells via both intrinsic and extrinsic pathway. Intriguingly, AKBA was also found to chemosensitize PC3 cells in synergistic combination with doxorubicin. To the best of our knowledge, this is the first study to document the synergistic chemosensitizing impact of AKBA when combined with doxorubicin in prostate cancer cells.This showcases the potential of AKBA in combinatorial therapy or adjuvant therapy for the management of prostate cancer. In sum, our results suggested that AKBA is a promising drug-like molecule against prostate cancer. Our investigation introduces a novel perspective, elucidating a previously unexplored dimension, and uncovering a compelling chemosensitizing phenomenon along with a strong synergistic effect arising from the concurrent application of these two agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All datasets generated for this study are included in the article. Further inquiries can be directed to the corresponding author.

References

  1. Gandaglia, G., Leni, R., Bray, F., Fleshner, N., Freedland, S. J., Kibel, A., Stattin, P., Van Poppel, H., & La Vecchia, C. (2021). Epidemiology and prevention of prostate cancer. European Urology Oncology, 4(6), 877–892.

    Article  PubMed  Google Scholar 

  2. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

    PubMed  Google Scholar 

  3. Marhold, M., Kramer, G., Krainer, M., & Le Magnen, C. (2022). The prostate cancer landscape in Europe: Current challenges, future opportunities. Cancer Letters, 526, 304–310.

    Article  CAS  PubMed  Google Scholar 

  4. Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48.

    PubMed  Google Scholar 

  5. Mathur, P., Sathishkumar, K., Chaturvedi, M., Das, P., Sudarshan, K. L., Santhappan, S., Nallasamy, V., John, A., Narasimhan, S., & Roselind, F. S. (2020). Cancer statistics, 2020: Report from national cancer registry programme. India. JCO Global Oncology., 6, 1063–1075.

    Article  PubMed  Google Scholar 

  6. Sathishkumar, K., Chaturvedi, M., Das, P., Stephen, S., & Mathur, P. (2022). Cancer incidence estimates for 2022 & projection for 2025: Result from national cancer Registry Programme, India. Indian Journal of Medical Research, 156(4–5), 598.

    PubMed  Google Scholar 

  7. Hariharan, K., & Padmanabha, V. (2016). Demography and disease characteristics of prostate cancer in India. Indian Journal of Urology: Journal of the Urological Society of India, 32(2), 103.

    Article  Google Scholar 

  8. Alnuqaydan, A. M., Almutary, A. G., Alshehri, O. Y., Henidi, H. A., Alajlan, A. M., Al Tamim, A., Alowaifeer, A., Rather, M. Y., & Rah, B. (2022). Evaluation of the cytotoxic activity of Tamarix articulata and its anticancer potential in prostate cancer cells. Journal of Applied Pharmaceutical Science., 12(02), 89–108.

    CAS  Google Scholar 

  9. Amaral, R. G., dos Santos, S. A., Andrade, L. N., Severino, P., & Carvalho, A. A. (2019). Natural products as treatment against cancer: A historical and current vision. Clinical Oncology (Royal College of Radiologist), 4(5), 1562.

    Google Scholar 

  10. Mellor, H. R., & Callaghan, R. (2008). Resistance to chemotherapy in cancer: A complex and integrated cellular response. Pharmacology, 81(4), 275–300.

    Article  CAS  PubMed  Google Scholar 

  11. Broxterman, H. J., Gotink, K. J., & Verheul, H. M. W. (2009). Understanding the causes of multidrug resistance in cancer: A comparison of doxorubicin and sunitinib. Drug Resist. Updat., 12(4–5), 114–126.

    Article  CAS  PubMed  Google Scholar 

  12. David-Beabes, G. L., Overman, M. J., Petrofski, J. A., Campbell, P. A., de Marzo, A. M., & Nelson, W. G. (2000). Doxorubicin-resistant variants of human prostate cancer cell lines DU 145, PC-3, PPC-1, and TSU-PR1: Characterization of biochemical determinants of antineoplastic drug sensitivity. International Journal of Oncology, 17(6), 1077–1163.

    CAS  PubMed  Google Scholar 

  13. Frederiksen, L. J., Siemens, D. R., Heaton, J. P., Maxwell, L. R., Adams, M. A., & Graham, C. H. (2003). Hypoxia induced resistance to doxorubicin in prostate cancer cells is inhibited by low concentrations of glyceryl trinitrate. Journal of Urology, 170(3), 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  14. Gao, M., Guo, L., Wang, H., Huang, J., Han, F., Xiang, S., & Wang, J. (2020). Orphan nuclear receptor RORγ confers doxorubicin resistance in prostate cancer. Cell Biology International., 44(10), 2170–2176.

    Article  CAS  PubMed  Google Scholar 

  15. Grunwald, V., DeGraffenried, L., Russel, D., Friedrichs, W. E., Ray, R. B., & Hidalgo, M. (2002). Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Research, 62(21), 6141–6145.

    CAS  PubMed  Google Scholar 

  16. Replogle-Schwab, T. S., Schwab, E. D., & Pienta, K. J. (1997). Development of doxorubicin resistant rat prostate cancer cell lines. Anticancer Research, 17(6D), 4535–4538.

    CAS  PubMed  Google Scholar 

  17. Zhao, W., Ning, L., Wang, L., Ouyang, T., Qi, L., Yang, R., & Wu, Y. (2021). miR-21 inhibition reverses doxorubicin-resistance and inhibits PC3 human prostate cancer cells proliferation. Andrologia, 53(5), e14016.

    Article  CAS  PubMed  Google Scholar 

  18. Ohya, S., Kajikuri, J., Endo, K., Kito, H., & Matsui, M. (2021). KCa1. 1 K+ Channel Inhibition overcomes resistance to antiandrogens and doxorubicin in a human prostate cancer LNCaP spheroid model. International Journal of Molecular Sciences, 22(24), 13553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aniogo, E. C., George, B. P., & Abrahamse, H. (2020). Plant-Based Compounds as Alternative Adjuvant Therapy for Multidrug-Resistant Cancer. Phytomedicine (pp. 7–12). CRC Press.

    Chapter  Google Scholar 

  20. Ng, C. X., Affendi, M. M., Chong, P. P., & Lee, S. H. (2022). The potential of plant-derived extracts and compounds to augment anticancer effects of chemotherapeutic drugs. Nutrition and Cancer, 74(9), 3058–3076.

    Article  CAS  PubMed  Google Scholar 

  21. Padhi, M., & Mahapatra, S. (2013). Boswellia serrata: A review of its traditional uses, phytochemistry and pharmacology. International Review of Biophysical Chemistry (IREBIC), 4, 74–83.

    Google Scholar 

  22. Yousef, J. M. (2011). Identifying frankincense impact by biochemical analysis and histological examination on rats. Saudi Journal of Biological Sciences, 18(2), 189–194.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  23. Gupta, I., Parihar, A., Malhotra, P., Gupta, S., Lüdtke, R., Safayhi, H., & Ammon, H. P. (2001). Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Medica., 67(05), 391–395.

    Article  CAS  PubMed  Google Scholar 

  24. Tilahun, M., Muys, B., Mathijs, E., Kleinn, C., Olschewski, R., & Gebrehiwot, K. (2011). Frankincense yield assessment and modeling in closed and grazed Boswellia papyrifera woodlands of Tigray, Northern Ethiopia. Journal of Arid Environments, 75(8), 695–702.

    Article  Google Scholar 

  25. Chhetri, B. K., Awadh Ali, N. A., & Setzer, W. N. (2015). A survey of chemical compositions and biological activities of Yemeni aromatic medicinal plants. Medicines, 2(2), 67–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shah, B. A., Qazi, G. N., & Taneja, S. C. (2009). Boswellic acids: A group of medicinally important compounds. Natural Products Reports, 26(1), 72–89.

    Article  CAS  Google Scholar 

  27. Liu, J.-J., Nilsson, A., Oredsson, S., Badmaev, V., & Duan, R.-D. (2002). Keto-and acetyl-keto-boswellic acids inhibit proliferation and induce apoptosis in Hep G2 cells via a caspase-8 dependent pathway. International Journal of Molecular Medicine, 10(4), 501–505.

    CAS  PubMed  Google Scholar 

  28. Takada, Y., Ichikawa, H., Badmaev, V., & Aggarwal, B. B. (2006). Acetyl-11-keto-β-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-κB and NF-κB-regulated gene expression. The Journal of Immunology, 176(5), 3127–3140.

    Article  CAS  PubMed  Google Scholar 

  29. Yuan, H.-Q., Kong, F., Wang, X.-L., Young, C. Y. F., Hu, X.-Y., & Lou, H.-X. (2008). Inhibitory effect of acetyl-11-keto-β-boswellic acid on androgen receptor by interference of Sp1 binding activity in prostate cancer cells. Biochemical Pharmacology, 75(11), 2112–2121.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y. Q., Wang, S. K., Xu, Q. Q., Yuan, H. Q., Guo, Y. X., Wang, Q., Kong, F., Lin, Z. M., Sun, D. Q., Wang, R. M., & Lou, H. X. (2019). Acetyl-11-keto-β-boswellic acid suppresses docetaxel-resistant prostate cancer cells in vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties. Acta Pharmacologica Sinica., 40(5), 689–698.

    Article  CAS  PubMed  Google Scholar 

  31. Pang, X., Yi, Z., Zhang, X., Sung, B., Qu, W., Lian, X., Aggarwal, B. B., & Liu, M. (2009). Acetyl-11-keto-β-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2–mediated angiogenesis. Cancer Research., 69(14), 5893–5900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bahuguna, A., Khan, I., Bajpai, V. K., & Kang, S. C. (2017). “MTT assay to evaluate the cytotoxic potential of a drug. ||| Bangladesh Journal of Pharmacology|||, 12(2), 115–118.

    Google Scholar 

  33. Mani, S., & Swargiary, G. (2023). “In Vitro Cytotoxicity Analysis: MTT/XTT, Trypan Blue Exclusion. Animal Cell Culture: Principles and Practice (pp. 267–284). Springer.

    Chapter  Google Scholar 

  34. Khan, I., Mahfooz, S., Saeed, M., Ahmad, I., & Ansari, I. A. (2021). “Andrographolide inhibits proliferation of colon cancer SW-480 cells via downregulating notch signaling pathway. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 21(4), 487–497.

    CAS  Google Scholar 

  35. Khan, F., Singh, V. K., Saeed, M., Kausar, M. A., & Ansari, I. A. (2019). “Carvacrol induced program cell death and cell cycle arrest in androgen-independent human prostate cancer cells via inhibition of notch signalling. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 19(13), 1588–1608.

    CAS  Google Scholar 

  36. Zhang, D., Li, K., Sun, C., Cao, G., Qi, Y., Lin, Z., Guo, Y., Liu, Z., Chen, Y., Liu, J., Cheng, G., Wang, P., Zhang, L., Zhang, J., Wen, J., Xu, D., Kong, F., & Zhao, S. (2018). Anti-cancer effects of Paris polyphylla ethanol extract by inducing cancer cell apoptosis and cycle arrest in prostate cancer cells. Current Urology., 11(3), 144–150.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lodi, A., Saha, A., Lu, X., Wang, B., Sentandreu, E., Collins, M., Kolonin, M. G., DiGiovanni, J., & Tiziani, S. (2017). Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism. npj Precision Oncology., 1(1), 18.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Roy, N. K., Parama, D., Banik, K., Bordoloi, D., Devi, A. K., Thakur, K. K., Padmavathi, G., Shakibaei, M., Fan, L., Sethi, G., & Kunnumakkara, A. B. (2019). An update on pharmacological potential of boswellic acids against chronic diseases. International Journal of Molecular Sciences, 20(17), 4101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, K., Li, L., Wang, S., Li, X., Ma, T., Liu, D., Jing, Y., & Zhao, L. (2017). Design and synthesis of novel 2-substituted 11-keto-boswellic acid heterocyclic derivatives as anti-prostate cancer agents with Pin1 inhibition ability. European Journal of Medicinal Chemistry, 126, 910–919.

    Article  CAS  PubMed  Google Scholar 

  40. Pillai, P., Pooleri, G. K., & Nair, S. V. (2021). Role of testosterone levels on the combinatorial effect of Boswellia serrata extract and enzalutamide on androgen dependent LNCaP cells and in patient derived cells. Integrative Cancer Therapies, 20, 1534735421996824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Park, Y. S., Lee, J. H., Harwalkar, J. A., Bondar, J., Safayhi, H., & Golubic, M. (2002). Acetyl-11-Keto-ß-Boswellic acid (Akba) is cytotoxic for meningioma cells and inhibits phosphorylation of the extracellular-signal regulated kinase 1 and 2. Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, 5, 387–393.

    Google Scholar 

  42. Saraste, A., & Pulkki, K. (2000). Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Research, 45(3), 528–537.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, B., Wang, D., Guo, F., & Xuan, C. (2015). Mitochondrial membrane potential and reactive oxygen species in cancer stem cells. Familial Cancer, 14, 19–23.

    Article  CAS  PubMed  Google Scholar 

  44. Tong, L., Chuang, C.-C., Wu, S., & Zuo, L. (2015). Reactive oxygen species in redox cancer therapy. Cancer Letters, 367(1), 18–25.

    Article  CAS  PubMed  Google Scholar 

  45. Kim, S. J., Kim, H. S., & Seo, Y. R. (2019). Understanding of ROS-inducing strategy in anticancer therapy. Oxidative Medicine and Cellular Longevity., 2019, 1–12.

    Article  CAS  Google Scholar 

  46. Ciniglia, C., Pinto, G., Sansone, C., & Pollio, A. (2010). Acridine orange/Ethidium bromide double staining test: A simple In-vitro assay to detect apoptosis induced by phenolic compounds in plant cells. Allelopathy Journal, 26(2), 301–308.

    Google Scholar 

  47. Kasibhatla, S., Amarante-Mendes, G. P., Finucane, D., Brunner, T., Bossy-Wetzel, E., & Green, D. R. (2006). Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Csh Protocols, 2006(3), 4493.

    Google Scholar 

  48. Watanabe, M., Hitomi, M., van der Wee, K., Rothenberg, F., Fisher, S. A., Zucker, R., Svoboda, K. K., Goldsmith, E. C., Heiskanen, K. M., & Nieminen, A. L. (2002). The pros and cons of apoptosis assays for use in the study of cells, tissues, and organs. Microscopy and Microanalysis., 8(5), 375–391.

    Article  CAS  PubMed  Google Scholar 

  49. Jamwal, S., Kumar, P., Kakkar, V., Kumari, P., & Chahal, S. K. (2021). Protocols in apoptosis identification and affirmation. Clinical Perspectives and Targeted Therapies in Apoptosis (pp. 127–152). Elsevier.

    Chapter  Google Scholar 

  50. Boice, A., & Bouchier-Hayes, L. (2020). Targeting apoptotic caspases in cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1867(6), 118688.

    Article  CAS  PubMed  Google Scholar 

  51. Liu, J.-J., Nilsson, Å., Oredsson, S., Badmaev, V., Zhao, W.-Z., & Duan, R.-D. (2002). Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis, 23(12), 2087–2093.

    Article  CAS  PubMed  Google Scholar 

  52. Syrovets, T., Gschwend, J. E., Büchele, B., Laumonnier, Y., Zugmaier, W., Genze, F., & Simmet, T. (2005). Inhibition of IκB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo. Journal of Biological Chemistry., 280(7), 6170–6180.

    Article  CAS  PubMed  Google Scholar 

  53. Lu, M., Xia, L., Hua, H., & Jing, Y. (2008). Acetyl-keto-β-Boswellic acid induces apoptosis through a death receptor 5–mediated pathway in prostate cancer cells. Cancer Research, 68(4), 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  54. Büchele, B., Zugmaier, W., Estrada, A., Genze, F., Syrovets, T., Paetz, C., Schneider, B., & Simmet, T. (2006). Characterization of 3α-acetyl-11-keto-α-boswellic acid, a pentacyclic triterpenoid inducing apoptosis in vitro and in vivo. Planta Medica., 72(14), 1285–1289.

    Article  PubMed  Google Scholar 

  55. Qurishi, Y., Hamid, A., Sharma, P. R., Wani, Z. A., Mondhe, D. M., Singh, S. K., Zargar, M. A., Andotra, S. S., Shah, B. A., Taneja, S. C., & Saxena, A. K. (2012). PARP cleavage and perturbance in mitochondrial membrane potential by 3-α-propionyloxy-β-boswellic acid results in cancer cell death and tumor regression in murine models. Future Oncology., 8(7), 867–881.

    Article  CAS  PubMed  Google Scholar 

  56. Pathania, A. S., Guru, S. K., Kumar, S., Kumar, A., Ahmad, M., Bhushan, S., Sharma, P. R., Mahajan, P., Shah, B. A., Sharma, S., Nargotra, A., Vishwakarma, R., Korkaya, H., & Malik, F. (2016). Interplay between cell cycle and autophagy induced by boswellic acid analog. Scientific Reports, 6(1), 33146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, W., Liu, J., Fu, W., Zheng, X., Ren, L., Liu, S., Wang, J., Ji, T., & Du, G. (2018). 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. Journal of Experimental & Clinical Cancer Research, 37, 1–15.

    CAS  Google Scholar 

  58. Jiang, X., Liu, Y., Zhang, G., Lin, S., Yuan, N., Wu, J., Yan, X., Ma, Y., & Ma, M. (2020). Acetyl-11-keto-β-boswellic acid inhibits precancerous breast lesion MCF-10AT cells via regulation of LINC00707/miR-206 that reduces estrogen receptor-α. Cancer Management and Research, 12, 2301–2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, D., Ge, S., Bai, J., & Song, Y. (2018). Boswellic acid exerts potent anticancer effects in HCT-116 human colon cancer cells mediated via induction of apoptosis, cell cycle arrest, cell migration inhibition and inhibition of PI3K/AKT signalling pathway. Journal of B.U.ON., 23(2), 340–345.

    PubMed  Google Scholar 

  60. Li, C., He, Q., Xu, Y., Lou, H., & Fan, P. (2022). Synthesis of 3-O-acetyl-11-keto-β-boswellic acid (AKBA)-derived amides and their mitochondria-targeted antitumor activities. ACS Omega, 7(11), 9853–9866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou, Z., Edil, B. H., & Li, M. (2023). Combination therapies for cancer: Challenges and opportunities. BMC Medicine, 21(1), 171.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jin, H., Wang, L., & Bernards, R. (2023). Rational combinations of targeted cancer therapies: Background, advances and challenges. Nature Reviews Drug Discovery, 22(3), 213–234.

    Article  CAS  PubMed  Google Scholar 

  63. Amin, A. R. M. R., Kucuk, O., Khuri, F. R., & Shin, D. M. (2009). Perspectives for cancer prevention with natural compounds. Journal of Clinical Oncology, 27(16), 2712.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cimino, S., Sortino, G., Favilla, V., Castelli, T., Madonia, M., Sansalone, S., Russo, G. I., & Morgia, G. (2012). Polyphenols: key issues involved in chemoprevention of prostate cancer. Oxidative Medicine and Cellular Longevity, 2012, 1–8.

    Article  Google Scholar 

  65. Lv, M., Zhuang, X., Zhang, Q., Cheng, Y., Wu, D., Wang, X., & Qiao, T. (2021). Acetyl-11-keto-β-boswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction, and autophagy suppression via p21-dependent signaling pathway. Cell Biology and Toxicology, 37, 209–228.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to DST-FIST for providing the necessary resources to carry out this research at Integral University. This manuscript has been assigned the communication number IU/R&D/2023-MCN0002087 by Integral University. Verma M also acknowledges the DST-INSPIRE Fellowship from the Department of Sciences and Technology, Government of India, for awarding the fellowship (SRF) for the smooth conduction of this work (DST-INSPIRE fellowship-IF180991). The Authors also acknowledge DST-FIST funding (SR/FST/LS-1/2017/13(C) to the Department of Biosciences, Integral University

Author information

Authors and Affiliations

Authors

Contributions

MV performed all the experiments and wrote the manuscript. SF helped in data summarization. IAA conceptualized, edited, analyzed, and finalized the manuscript.

Corresponding author

Correspondence to Irfan Ahmad Ansari.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Fatima, S., Saeed, M. et al. Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer Cells. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01089-7

Keywords

Navigation