Skip to main content
Log in

Revolutionizing Synthetic Antibody Design: Harnessing Artificial Intelligence and Deep Sequencing Big Data for Unprecedented Advances

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Synthetic antibodies (Abs) represent a category of engineered proteins meticulously crafted to replicate the functions of their natural counterparts. Such Abs are generated in vitro, enabling advanced molecular alterations associated with antigen recognition, paratope site engineering, and biochemical refinements. In a parallel realm, deep sequencing has brought about a paradigm shift in molecular biology. It facilitates the prompt and cost-effective high-throughput sequencing of DNA and RNA molecules, enabling the comprehensive big data analysis of Ab transcriptomes, including specific regions of interest. Significantly, the integration of artificial intelligence (AI), based on machine- and deep- learning approaches, has fundamentally transformed our capacity to discern patterns hidden within deep sequencing big data, including distinctive Ab features and protein folding free energy landscapes. Ultimately, current AI advances can generate approximations of the most stable Ab structural configurations, enabling the prediction of de novo synthetic Abs. As a result, this manuscript comprehensively examines the latest and relevant literature concerning the intersection of deep sequencing big data and AI methodologies for the design and development of synthetic Abs. Together, these advancements have accelerated the exploration of antibody repertoires, contributing to the refinement of synthetic Ab engineering and optimizations, and facilitating advancements in the lead identification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

Abs:

Antibodies

AI:

Artificial intelligence

NGS:

Next-generation sequencing

CDR:

Complementary determining region

BCR:

B-cell receptor

HER2:

Human epidermal growth factor receptor 2

AbLang:

Antibody language

AbRep:

Antibody representation

AbHead:

Antibody head model

AntBO:

Antibody design based on a Bayesian Optimization framework

AbMap:

Antibody binding epitope mapping

AntiBERTa:

Antibody-specific Bidirectional Encoder Representation from Transformers

AbMap:

Antibody binding epitope Mapping

OptMAVEn:

Optimal Method for Antibody Variable region Engineering

OptCDR:

Optimal CDR

AbDesign:

Antibody design

RAbD:

Rosetta Ab design

2D:

Two-dimensional

3D:

Three-dimensional

References

  1. Bradbury, A. R. M., Sidhu, S. S., Dübel, S., McCafferty, J., & Dubel, S. (2011). Beyond natural antibodies: The power of in vitro display technologies. Nature biotechnology, 29(3), 245–254. https://doi.org/10.1038/nbt.1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adams, J. J., & Sidhu, S. S. (2014). Synthetic antibody technologies. Current Opinion in Structural Biology, 24(1), 1–9. https://doi.org/10.1016/j.sbi.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  3. Chen, G., & Sidhu, S. S. (2014). Design and generation of synthetic antibody libraries for phage display. Methods in Molecular Biology (Clifton, N.J.), 1131, 113–131. https://doi.org/10.1007/978-1-62703-992-5_8

    Article  CAS  PubMed  Google Scholar 

  4. Chen, G., Gorelik, L., Simon, K. J., Pavlenco, A., Cheung, A., Brickelmaier, M., & Sidhu, S. S. (2015). Synthetic antibodies and peptides recognizing progressive multifocal leukoencephalopathyspecific point mutations in polyomavirus JC capsid viral protein 1. MAbs, 7(4), 681–692. https://doi.org/10.1080/19420862.2015.1038447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miersch, S., & Sidhu, S. S. (2012). Synthetic antibodies: Concepts, potential and practical considerations. Methods, 57(4), 486–498. https://doi.org/10.1016/j.ymeth.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  6. Sidhu, S. S., & Fellouse, Fa. (2006). Synthetic therapeutic antibodies. Nature Chemical Biology, 2(12), 682–688. https://doi.org/10.1038/nchembio843

    Article  CAS  PubMed  Google Scholar 

  7. Fuh, G. (2007). Synthetic antibodies as therapeutics. Expert Opinion on Biological Therapy, 7(1), 73–87. https://doi.org/10.1517/14712598.7.1.73

    Article  CAS  PubMed  Google Scholar 

  8. Metzker, M. L. (2009). Sequencing technologies — the next generation. Nature Reviews Genetics, 11(1), 31–46. https://doi.org/10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  9. Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, J., Chiodini, R., Badr, A., & Zhang, G. (2011). The impact of next-generation sequencing on genomics. Journal of Genetics and Genomics, 38(3), 95–109. https://doi.org/10.1016/J.JGG.2011.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mardis, E. R. (2013). Next-generation sequencing platforms. Annual Review of Analytical Chemistry, 6(1), 287–303. https://doi.org/10.1146/annurev-anchem-062012-092628

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Shendure, J., & Aiden, E. L. (2012). The expanding scope of DNA sequencing. Nature Biotechnology, 30(11), 1084–1094. https://doi.org/10.1038/nbt.2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meaburn, E., & Schulz, R. (2012). Next generation sequencing in epigenetics: Insights and challenges. Seminars in Cell & Developmental Biology, 23(2), 192–199. https://doi.org/10.1016/J.SEMCDB.2011.10.010

    Article  CAS  Google Scholar 

  14. Raoult, D. (2008). Obesity pandemics and the modification of digestive bacterial flora. European Journal of Clinical Microbiology and Infectious Diseases. https://doi.org/10.1007/s10096-008-0490-x

    Article  PubMed  Google Scholar 

  15. Jünemann, S., Kleinbölting, N., Jaenicke, S., Henke, C., Hassa, J., Nelkner, J., & Stoye, J. (2017). Bioinformatics for NGS-based metagenomics and the application to biogas research. Journal of Biotechnology, 261, 10–23. https://doi.org/10.1016/J.JBIOTEC.2017.08.012

    Article  PubMed  Google Scholar 

  16. Dong, Z. C., & Chen, Y. (2013). Transcriptomics: Advances and approaches. Science China Life Sciences, 56(10), 960–967. https://doi.org/10.1007/S11427-013-4557-2/METRICS

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Morganti, S., Tarantino, P., Ferraro, E., D’Amico, P., Duso, B. A., & Curigliano, G. (2019). Next generation sequencing (NGS): A revolutionary technology in pharmacogenomics and personalized medicine in cancer. Advances in Experimental Medicine and Biology, 1168, 9–30. https://doi.org/10.1007/978-3-030-24100-1_2

    Article  CAS  PubMed  Google Scholar 

  18. Frese, K. S., Katus, H. A., & Meder, B. (2013). Next-generation sequencing: From understanding biology to personalized medicine. Biology, 2(1), 378–398. https://doi.org/10.3390/BIOLOGY2010378

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rabbani, B., Nakaoka, H., Akhondzadeh, S., Tekin, M., & Mahdieh, N. (2016). Next generation sequencing: Implications in personalized medicine and pharmacogenomics. Molecular BioSystems, 12(6), 1818–1830. https://doi.org/10.1039/C6MB00115G

    Article  CAS  PubMed  Google Scholar 

  20. Hong, H., Zhang, W., Su, Z., Shen, J., Ge, W., Ning, B., & Tong, W. (2013). Next-generation sequencing (NGS): A revolutionary technology in pharmacogenomics and personalized medicine. Omics for personalized medicine (pp. 39–61). New Delhi: Springer. https://doi.org/10.1007/978-81-322-1184-6_3

    Chapter  Google Scholar 

  21. Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., & Gu, Y. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13(1), 341. https://doi.org/10.1186/1471-2164-13-341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meng, W., Zhang, B., Schwartz, G. W., Rosenfeld, A. M., Ren, D., Thome, J. J. C., & Luning Prak, E. T. (2017). An atlas of B-cell clonal distribution in the human body. Nature Biotechnology, 35(9), 879–884. https://doi.org/10.1038/nbt.3942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Georgiou, G., Ippolito, G. C., Beausang, J., Busse, C. E., Wardemann, H., & Quake, S. R. (2014). The promise and challenge of high-throughput sequencing of the antibody repertoire. Nature Biotechnology, 32(2), 158–168. https://doi.org/10.1038/nbt.2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robins, H. (2013). Immunosequencing: Applications of immune repertoire deep sequencing. Current Opinion in Immunology, 25(5), 646–652. https://doi.org/10.1016/J.COI.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  25. Waight, A. B., Prihoda, D., Shrestha, R., Metcalf, K., Bailly, M., Ancona, M., & Fayadat-Dilman, L. (2023). A machine learning strategy for the identification of key in silico descriptors and prediction models for IgG monoclonal antibody developability properties. MAbs. https://doi.org/10.1080/19420862.2023.2248671

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mathonet, P., & Ullman, C. G. (2013). The application of next generation sequencing to the understanding of antibody repertoires. Frontiers in Immunology, 4(SEP), 56179. https://doi.org/10.3389/fimmu.2013.00265

    Article  CAS  Google Scholar 

  27. Glanville, J., D’Angelo, S., Khan, T. A., Reddy, S. T., Naranjo, L., Ferrara, F., & Bradbury, A. R. M. (2015). Deep sequencing in library selection projects: What insight does it bring? Current Opinion in Structural Biology, 33, 146–160. https://doi.org/10.1016/J.SBI.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rouet, R., Jackson, K. J. L., Langley, D. B., & Christ, D. (2018). Next-generation sequencing of antibody display repertoires. Frontiers in Immunology, 9(FEB), 334733. https://doi.org/10.3389/fimmu.2018.00118

    Article  CAS  Google Scholar 

  29. Vaisman-Mentesh, A., & Wine, Y. (2018). Monitoring phage biopanning by next-generation sequencing. Methods in molecular biology (Clifton, N.J.), 1701, 463–473. https://doi.org/10.1007/978-1-4939-7447-4_26

    Article  CAS  PubMed  Google Scholar 

  30. Friedensohn, S., Neumeier, D., Khan, T. A., Csepregi, L., Parola, C., de Vries, A. R. G., & Reddy, S. T. (2020). Convergent selection in antibody repertoires is revealed by deep learning. bioRxiv. https://doi.org/10.1101/2020.02.25.965673

    Article  Google Scholar 

  31. Lim, Y. W., Adler, A. S., & Johnson, D. S. (2022). Predicting antibody binders and generating synthetic antibodies using deep learning. MAbs. https://doi.org/10.1080/19420862.2022.2069075

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/NATURE14539

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Hsu, H. J., Lee, K. H., Jian, J. W., Chang, H. J., Yu, C. M., Lee, Y. C., & Yang, A. S. (2014). Antibody variable domain interface and framework sequence requirements for stability and function by high-throughput experiments. Structure, 22(1), 22–34. https://doi.org/10.1016/j.str.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  34. Fischman, S., & Ofran, Y. (2018). Computational design of antibodies. Current opinion in structural biology, 51, 156–162. https://doi.org/10.1016/J.SBI.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  35. Huang, P. S., Boyken, S. E., & Baker, D. (2016). The coming of age of de novo protein design. Nature, 537(7620), 320–327. https://doi.org/10.1038/nature19946

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Sormanni, P., Aprile, F. A., & Vendruscolo, M. (2018). Third generation antibody discovery methods: In silico rational design. Chemical Society Reviews, 47(24), 9137–9157. https://doi.org/10.1039/C8CS00523K

    Article  CAS  PubMed  Google Scholar 

  37. Cao, H., Wang, J., He, L., Qi, Y., & Zhang, J. Z. (2019). DeepDDG: Predicting the stability change of protein point mutations using neural networks. Journal of Chemical Information and Modeling, 59(4), 1508–1514. https://doi.org/10.1021/ACS.JCIM.8B00697/SUPPL_FILE/CI8B00697_SI_003.XLSX

    Article  CAS  PubMed  Google Scholar 

  38. Dehouck, Y., Kwasigroch, J. M., Gilis, D., & Rooman, M. (2011). PoPMuSiC 2.1: A web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics, 12(1), 151. https://doi.org/10.1186/1471-2105-12-151

    Article  PubMed  PubMed Central  Google Scholar 

  39. Folkman, L., Stantic, B., Sattar, A., & Zhou, Y. (2016). EASE-MM: Sequence-based prediction of mutation-induced stability changes with feature-based multiple models. Journal of Molecular Biology, 428(6), 1394–1405. https://doi.org/10.1016/J.JMB.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  40. Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014). mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics, 30(3), 335–342. https://doi.org/10.1093/BIOINFORMATICS/BTT691

    Article  CAS  PubMed  Google Scholar 

  41. Capriotti, E., Fariselli, P., Rossi, I., & Casadio, R. (2008). A three-state prediction of single point mutations on protein stability changes. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-9-S2-S6

    Article  PubMed  PubMed Central  Google Scholar 

  42. Quan, L., Lv, Q., & Zhang, Y. (2016). STRUM: Structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics, 32(19), 2936–2946. https://doi.org/10.1093/BIOINFORMATICS/BTW361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins: Structure, Function, and Bioinformatics, 62(4), 1125–1132. https://doi.org/10.1002/PROT.20810

    Article  CAS  Google Scholar 

  44. Krawczyk, K., Baker, T., Shi, J., & Deane, C. M. (2013). Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Engineering, Design & Selection : PEDS, 26(10), 621–629. https://doi.org/10.1093/PROTEIN/GZT043

    Article  CAS  Google Scholar 

  45. Kunik, V., Ashkenazi, S., & Ofran, Y. (2012). Paratome: An online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Research, 40(W1), W521–W524. https://doi.org/10.1093/NAR/GKS480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Olimpieri, P. P., Chailyan, A., Tramontano, A., & Marcatili, P. (2013). Prediction of site-specific interactions in antibody-antigen complexes: The proABC method and server. Bioinformatics (Oxford, England), 29(18), 2285–2291. https://doi.org/10.1093/BIOINFORMATICS/BTT369

    Article  CAS  PubMed  Google Scholar 

  47. Mason, D. M., Friedensohn, S., Weber, C. R., Jordi, C., Wagner, B., Meng, S. M., & Reddy, S. T. (2021). Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nature Biomedical Engineering, 5(6), 600–612. https://doi.org/10.1038/S41551-021-00699-9

    Article  CAS  PubMed  Google Scholar 

  48. Deac, A., VeliČković, P., & Sormanni, P. (2019). Attentive cross-modal paratope prediction. Journal of Computational Biology : A Journal of Computational Molecular Cell Biology, 26(6), 536–545. https://doi.org/10.1089/cmb.2018.0175

    Article  CAS  PubMed  Google Scholar 

  49. Daberdaku, S., & Ferrari, C. (2019). Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics (Oxford, England), 35(11), 1870–1876. https://doi.org/10.1093/bioinformatics/bty918

    Article  CAS  PubMed  Google Scholar 

  50. Liberis, E., Velickovic, P., Sormanni, P., Vendruscolo, M., & Lio, P. (2018). Parapred: Antibody paratope prediction using convolutional and recurrent neural networks. Bioinformatics (Oxford, England), 34(17), 2944–2950. https://doi.org/10.1093/BIOINFORMATICS/BTY305

    Article  CAS  PubMed  Google Scholar 

  51. Ambrosetti, F., Olsen, T. H., Olimpieri, P. P., Jiménez-García, B., Milanetti, E., Marcatilli, P., & Bonvin, A. M. J. J. (2020). proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking. Bioinformatics (Oxford, England), 36(20), 5107–5108. https://doi.org/10.1093/BIOINFORMATICS/BTAA644

    Article  CAS  PubMed  Google Scholar 

  52. Qi, H., Ma, M., Hu, C., Xu, Z. W., Wu, F. L., Wang, N., & Tao, S. C. (2021). Antibody binding epitope mapping (AbMap) of hundred antibodies in a single run. Molecular and Cellular Proteomics, 20, 100059. https://doi.org/10.1074/MCP.RA120.002314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Blarcom, T., Rossi, A., Foletti, D., Sundar, P., Pitts, S., Melton, Z., & Chaparro-Riggers, J. (2018). Epitope mapping using yeast display and next generation sequencing. Methods in molecular biology (Clifton, N.J.), 1785, 89–118. https://doi.org/10.1007/978-1-4939-7841-0_7

    Article  CAS  PubMed  Google Scholar 

  54. Ibsen, K. N., & Daugherty, P. S. (2017). Prediction of antibody structural epitopes via random peptide library screening and next generation sequencing. Journal of immunological methods, 451, 28–36. https://doi.org/10.1016/J.JIM.2017.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rebollo, I. R., Sabisz, M., Baeriswyl, V., & Heinis, C. (2014). Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides. Nucleic Acids Research. https://doi.org/10.1093/NAR/GKU940

    Article  Google Scholar 

  56. Ionov, Y., & Rogovskyy, A. S. (2020). Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera. PLoS ONE, 15(1), e0226378. https://doi.org/10.1371/journal.pone.0226378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang, W., Soeung, V., Boragine, D. M., Hu, L., Prasad, B. V. V., Estes, M. K., & Palzkill, T. (2020). High-resolution mapping of human norovirus antigens via genomic phage display library selections and deep sequencing. Journal of Virology. https://doi.org/10.1128/JVI.01495-20

    Article  PubMed  PubMed Central  Google Scholar 

  58. Paull, M. L., Johnston, T., Ibsen, K. N., Bozekowski, J. D., & Daugherty, P. S. (2019). A general approach for predicting protein epitopes targeted by antibody repertoires using whole proteomes. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0217668

    Article  PubMed  PubMed Central  Google Scholar 

  59. Paull, M. L., Bozekowski, J. D., & Daugherty, P. S. (2021). Mapping antibody binding using multiplexed epitope substitution analysis. Journal of Immunological Methods. https://doi.org/10.1016/J.JIM.2021.113178

    Article  PubMed  Google Scholar 

  60. Norman, R. A., Ambrosetti, F., Bonvin, A. M. J. J., Colwell, L. J., Kelm, S., Kumar, S., & Krawczyk, K. (2020). Computational approaches to therapeutic antibody design: Established methods and emerging trends. Briefings in Bioinformatics, 21(5), 1549–1567. https://doi.org/10.1093/BIB/BBZ095

    Article  PubMed  Google Scholar 

  61. Buck, P. M., Kumar, S., Wang, X., Agrawal, N. J., Trout, B. L., & Singh, S. K. (2012). Computational methods to predict therapeutic protein aggregation. Methods in Molecular Biology (Clifton, N.J.), 899, 425–451. https://doi.org/10.1007/978-1-61779-921-1_26

    Article  CAS  PubMed  Google Scholar 

  62. Agrawal, N. J., Kumar, S., Wang, X., Helk, B., Singh, S. K., & Trout, B. L. (2011). Aggregation in protein-based biotherapeutics: Computational studies and tools to identify aggregation-prone regions. Journal of pharmaceutical sciences, 100(12), 5081–5095. https://doi.org/10.1002/JPS.22705

    Article  CAS  PubMed  Google Scholar 

  63. Wang, X., Das, T. K., Singh, S. K., & Kumar, S. (2009). Potential aggregation prone regions in biotherapeutics: A survey of commercial monoclonal antibodies. MAbs, 1(3), 254–267. https://doi.org/10.4161/MABS.1.3.8035

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R., & Warwicker, J. (2017). Protein-Sol: A web tool for predicting protein solubility from sequence. Bioinformatics (Oxford, England), 33(19), 3098–3100. https://doi.org/10.1093/BIOINFORMATICS/BTX345

    Article  CAS  PubMed  Google Scholar 

  65. Roberts, C. J. (2014). Therapeutic protein aggregation: Mechanisms, design, and control. Trends in biotechnology, 32(7), 372. https://doi.org/10.1016/J.TIBTECH.2014.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rawat, P., Kumar, S., & Michael Gromiha, M. (2018). An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins. International Journal of Biological Macromolecules, 118, 1157–1167. https://doi.org/10.1016/J.IJBIOMAC.2018.06.102

    Article  CAS  PubMed  Google Scholar 

  67. Obrezanova, O., Arnell, A., De La Cuesta, R. G., Berthelot, M. E., Gallagher, T. R. A., Zurdo, J., & Stallwood, Y. (2015). Aggregation risk prediction for antibodies and its application to biotherapeutic development. MAbs, 7(2), 352–363. https://doi.org/10.1080/19420862.2015.1007828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kuroda, D., & Tsumoto, K. (2020). Engineering stability, viscosity, and immunogenicity of antibodies by computational design. Journal of Pharmaceutical Sciences, 109(5), 1631–1651. https://doi.org/10.1016/J.XPHS.2020.01.011

    Article  CAS  PubMed  Google Scholar 

  69. Chen, Z., Wang, X., Chen, X., Huang, J., Wang, C., Wang, J., & Wang, Z. (2023). Accelerating therapeutic protein design with computational approaches toward the clinical stage. Computational and Structural Biotechnology Journal, 21, 2909–2926. https://doi.org/10.1016/J.CSBJ.2023.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lippow, S. M., Wittrup, K. D., & Tidor, B. (2007). Computational design of antibody affinity improvement beyond in vivo maturation. Nature biotechnology, 25(10), 1171. https://doi.org/10.1038/NBT1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Olsen, T. H., Moal, I. H., & Deane, C. M. (2022). AbLang: An antibody language model for completing antibody sequences. Bioinformatics Advances. https://doi.org/10.1093/BIOADV/VBAC046

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kovaltsuk, A., Leem, J., Kelm, S., Snowden, J., Deane, C. M., & Krawczyk, K. (2018). Observed antibody space: A resource for data mining next-generation sequencing of antibody repertoires. The Journal of Immunology, 201(8), 2502–2509. https://doi.org/10.4049/JIMMUNOL.1800708

    Article  CAS  PubMed  Google Scholar 

  73. Leem, J., Mitchell, L. S., Farmery, J. H. R., Barton, J., & Galson, J. D. (2022). Deciphering the language of antibodies using self-supervised learning. Patterns, 3(7), 100513. https://doi.org/10.1016/J.PATTER.2022.100513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Potocnakova, L., Bhide, M., & Pulzova, L. B. (2016). An introduction to B-cell epitope mapping and in silico epitope prediction. Journal of Immunology Research. https://doi.org/10.1155/2016/6760830

    Article  PubMed  PubMed Central  Google Scholar 

  75. Peri, C., Gagni, P., Combi, F., Gori, A., Chiari, M., Longhi, R., & Colombo, G. (2013). Rational epitope design for protein targeting. ACS chemical biology, 8(2), 397–404. https://doi.org/10.1021/CB300487U

    Article  CAS  PubMed  Google Scholar 

  76. Van Blarcom, T., Rossi, A., Foletti, D., Sundar, P., Pitts, S., Bee, C., & Rajpal, A. (2015). Precise and efficient antibody epitope determination through library design, yeast display and next-generation sequencing. Journal of Molecular Biology, 427(6), 1513–1534. https://doi.org/10.1016/J.JMB.2014.09.020

    Article  PubMed  Google Scholar 

  77. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., & Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/S41586-020-2012-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ripoll, D. R., Chaudhury, S., & Wallqvist, A. (2021). Using the antibody-antigen binding interface to train image-based deep neural networks for antibody-epitope classification. PLoS Computational Biology. https://doi.org/10.1371/JOURNAL.PCBI.1008864

    Article  PubMed  PubMed Central  Google Scholar 

  79. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research. https://doi.org/10.1093/nar/gki481

    Article  PubMed  PubMed Central  Google Scholar 

  80. Torchala, M., Moal, I. H., Chaleil, R. A. G., Fernandez-Recio, J., & Bates, P. A. (2013). SwarmDock: A server for flexible protein-protein docking. Bioinformatics (Oxford, England), 29(6), 807–809. https://doi.org/10.1093/BIOINFORMATICS/BTT038

    Article  CAS  PubMed  Google Scholar 

  81. Dominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/JA026939X

    Article  CAS  PubMed  Google Scholar 

  82. De Vries, S. J., Schindler, C. E. M., Chauvot De Beauchêne, I., & Zacharias, M. (2015). A web interface for easy flexible protein-protein docking with ATTRACT. Biophysical journal, 108(3), 462–465. https://doi.org/10.1016/J.BPJ.2014.12.015

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  83. Jiménez-García, B., Pons, C., & Fernández-Recio, J. (2013). pyDockWEB: A web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics (Oxford, England), 29(13), 1698–1699. https://doi.org/10.1093/BIOINFORMATICS/BTT262

    Article  PubMed  Google Scholar 

  84. Ghanbarpour, A., Jiang, M., Foster, D., & Chai, Q. (2023). Structure-free antibody paratope similarity prediction for in silico epitope binning via protein language models. iScience. https://doi.org/10.1016/J.ISCI.2023.106036

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wong, W. K., Robinson, S. A., Bujotzek, A., Georges, G., Lewis, A. P., Shi, J., & Deane, C. M. (2021). Ab-Ligity: Identifying sequence-dissimilar antibodies that bind to the same epitope. MAbs. https://doi.org/10.1080/19420862.2021.1873478

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ruffolo, J. A., Chu, L. S., Mahajan, S. P., & Gray, J. J. (2023). Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nature Communications. https://doi.org/10.1038/S41467-023-38063-X

    Article  PubMed  PubMed Central  Google Scholar 

  87. Akbar, R., Robert, P. A., Pavlović, M., Jeliazkov, J. R., Snapkov, I., Slabodkin, A., & Greiff, V. (2021). A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. Cell Reports, 34(11), 108856. https://doi.org/10.1016/j.celrep.2021.108856

    Article  CAS  PubMed  Google Scholar 

  88. Li, T., Pantazes, R. J., & Maranas, C. D. (2014). OptMAVEn – A new framework for the de novo design of antibody variable region models targeting specific antigen epitopes. PLoS ONE, 9(8), e105954. https://doi.org/10.1371/JOURNAL.PONE.0105954

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  89. Poosarla, V. G., Li, T., Goh, B. C., Schulten, K., Wood, T. K., & Maranas, C. D. (2017). Computational de novo design of antibodies binding to a peptide with high affinity. Biotechnology and Bioengineering, 114(6), 1331–1342. https://doi.org/10.1002/BIT.26244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pantazes, R. J., & Maranas, C. D. (2010). OptCDR: A general computational method for the design of antibody complementarity determining regions for targeted epitope binding. Protein Engineering, Design and Selection, 23(11), 849–858. https://doi.org/10.1093/PROTEIN/GZQ061

    Article  CAS  PubMed  Google Scholar 

  91. Lapidoth, G. D., Baran, D., Pszolla, G. M., Norn, C., Alon, A., Tyka, M. D., & Fleishman, S. J. (2015). AbDesign: An algorithm for combinatorial backbone design guided by natural conformations and sequences. Proteins: Structure, Function, and Bioinformatics, 83(8), 1385–1406. https://doi.org/10.1002/PROT.24779

    Article  CAS  Google Scholar 

  92. Adolf-Bryfogle, J., Kalyuzhniy, O., Kubitz, M., Weitzner, B. D., Hu, X., Adachi, Y., & Dunbrack, R. L. (2018). RosettaAntibodyDesign (RAbD): A general framework for computational antibody design. PLOS Computational Biology, 14(4), e1006112. https://doi.org/10.1371/JOURNAL.PCBI.1006112

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kuroda, D., Shirai, H., Jacobson, M. P., & Nakamura, H. (2012). Computer-aided antibody design. Protein Engineering, Design and Selection, 25(10), 507–521. https://doi.org/10.1093/protein/gzs024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, X., Taylor, R. D., Griffin, L., Coker, S. F., Adams, R., Ceska, T., & Baker, T. (2017). Computational design of an epitope-specific Keap1 binding antibody using hotspot residues grafting and CDR loop swapping. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/srep41306

    Article  CAS  Google Scholar 

  95. Moroncini, G., Kanu, N., Solforosi, L., Abalos, G., Telling, G. C., Head, M., & Williamson, R. A. (2004). Motif-grafted antibodies containing the replicative interface of cellular PrP are specific for PrPSc. Proceedings of the National Academy of Sciences of the United States of America, 101(28), 10404–10409. https://doi.org/10.1073/pnas.0403522101

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Robinson, L. N., Tharakaraman, K., Rowley, K. J., Costa, V. V., Chan, K. R., Wong, Y. H., & Sasisekharan, R. (2015). Structure-guided design of an anti-dengue antibody directed to a non-immunodominant epitope. Cell, 162(3), 493–504. https://doi.org/10.1016/J.CELL.2015.06.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Barthelemy, P. A., Raab, H., Appleton, B. A., Bond, C. J., Wu, P., Wiesmann, C., & Sidhu, S. S. (2008). Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. Journal of Biological Chemistry, 283(6), 3639–3654. https://doi.org/10.1074/jbc.M708536200

    Article  CAS  PubMed  Google Scholar 

  98. Ladiwala, A. R. A., Bhattacharya, M., Perchiacca, J. M., Cao, P., Raleigh, D. P., Abedini, A., & Tessier, P. M. (2012). Rational design of potent domain antibody inhibitors of amyloid fibril assembly. Proceedings of the National Academy of Sciences of the United States of America, 109(49), 19965–19970. https://doi.org/10.1073/pnas.1208797109

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  99. Ruffolo, J. A., Sulam, J., & Gray, J. J. (2022). Antibody structure prediction using interpretable deep learning. Patterns. https://doi.org/10.1016/J.PATTER.2021.100406

    Article  PubMed  Google Scholar 

  100. Akbar, R., Robert, P. A., Weber, C. R., Widrich, M., Frank, R., Pavlović, M., & Greiff, V. (2022). In silico proof of principle of machine learning-based antibody design at unconstrained scale. MAbs. https://doi.org/10.1080/19420862.2022.2031482

    Article  PubMed  PubMed Central  Google Scholar 

  101. Greiff, V., Menzel, U., Miho, E., Weber, C., Riedel, R., Cook, S., & Reddy, S. T. (2017). Systems analysis reveals high genetic and antigen-driven predetermination of antibody repertoires throughout B cell development. Cell Reports, 19(7), 1467–1478. https://doi.org/10.1016/J.CELREP.2017.04.054

    Article  CAS  PubMed  Google Scholar 

  102. Khan, A., Cowen-Rivers, A. I., Grosnit, A., Deik, D. G. X., Robert, P. A., Greiff, V., & Bou-Ammar, H. (2023). Toward real-world automated antibody design with combinatorial Bayesian optimization. Cell Reports Methods. https://doi.org/10.1016/J.CRMETH.2022.100374

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nimrod, G., Fischman, S., Austin, M., Herman, A., Keyes, F., Leiderman, O., & Ofran, Y. (2018). Computational design of epitope-specific functional antibodies. Cell Reports, 25(8), 2121-2131.e5. https://doi.org/10.1016/J.CELREP.2018.10.081

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Peter Olson and Janet Stewart for reviewing of this article and providing detailed suggestions.

Funding

This work was partially supported by RevivAb Educational Advancement Grant MT-021.

Author information

Authors and Affiliations

Authors

Contributions

Single author—Not applicable.

Corresponding author

Correspondence to Eugenio Gallo.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, E. Revolutionizing Synthetic Antibody Design: Harnessing Artificial Intelligence and Deep Sequencing Big Data for Unprecedented Advances. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01064-2

Keywords

Navigation