Skip to main content
Log in

Hsa_circular RNA_0045474 Facilitates Osteoarthritis Via Modulating microRNA-485-3p and Augmenting Transcription Factor 4

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Circular RNA (circRNA) influences on the pathological process of osteoarthritis (OA) and may be a potential marker for disease diagnosis. The study was to scrutinize the association of circ_0045474 with OA. Clinical samples of OA patients were collected, and 12 circRNAs derived from KPNA2 gene were examined. CHON-001 cells were stimulated with IL-1β to construct an OA chondrocyte model. miR-485-3p, transcription factor 4 (TCF4) and circ_0045474, type II procollagen (COL2A1), and human collagenase-3 (MMP13) were tested. Furthermore, cell activities were analyzed. The relationship between miR-485-3p, TCF4, and circ_0045474 was determined. The role of circ_0045474 in vivo was further confirmed by constructing an OA mouse model by anterior cruciate ligament transection. circ_0045474 expression was elevated in OA patients. Suppressing circ_0045474 restrained IL-1β-stimulated extracellular matrix degradation, inflammatory cytokine secretion, and chondrocyte apoptosis. Circ_0045474 competitively combined with miR-485-3p, while TCF4 was the target of miR-485-3p. Circ_0045474 modulated IL-1β-stimulated extracellular matrix degradation, inflammatory cytokine secretion, and chondrocyte apoptosis via miR-485-3p/TCF4 axis. Suppressing circ 0045474 was effective to alleviate OA in mice. Silenced circ_0045474 suppresses OA progression in vitro and vivo via miR-485-3p/TCF4 axis. In short, circ_0045474 can be considered a novel therapeutic target for OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Chen, D., Shen, J., Zhao, W., Wang, T., Han, L., Hamilton, J. L., & Im, H.-J. (2017). Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Research, 5, 16044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Madry, H., Luyten, F. P., & Facchini, A. (2012). Biological aspects of early osteoarthritis. Knee Surgery, Sports Traumatology, Arthroscopy, 20, 407–422.

    Article  PubMed  Google Scholar 

  3. Xia, B., Di Chen, C., Zhang, J., Hu, S., Jin, H., & Tong, P. (2014). Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcified Tissue International, 95, 495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Masson, A. O., & Krawetz, R. J. (2020). Understanding cartilage protection in OA and injury: A spectrum of possibilities. BMC Musculoskeletal Disorders, 21, 432.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Han, L., Grodzinsky, A. J., & Ortiz, C. (2011). Nanomechanics of the cartilage extracellular matrix. Annual Review of Materials Research, 41, 133–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yin, W., & Lei, Y. (2018). Leonurine inhibits IL-1beta induced inflammation in murine chondrocytes and ameliorates murine osteoarthritis. International Immunopharmacology, 65, 50–59.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Y., Guo, H., Li, L., Bao, D., Gao, F., Li, Q., Huang, Q., Duan, X., & Xiang, Z. (2020). Long non-coding RNA (lncRNA) small nucleolar RNA host gene 15 (SNHG15) alleviates osteoarthritis progression by regulation of extracellular matrix homeostasis. Medical Science Monitor, 26, e923868.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Qu, S., Yang, X., Li, X., Wang, J., Gao, Y., Shang, R., Sun, W., Dou, K., & Li, H. (2015). Circular RNA: A new star of noncoding RNAs. Cancer Letters, 365, 141–148.

    Article  CAS  PubMed  Google Scholar 

  9. Kong, H., Sun, M.-L., Zhang, X.-A., & Wang, X.-Q. (2021). Crosstalk among circRNA/lncRNA, miRNA, and mRNA in osteoarthritis. Frontiers in Cell and Developmental Biology, 9, 774370.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zheng, Y.-L., Song, G., Guo, J.-B., Su, X., Chen, Y.-M., Yang, Z., Chen, P.-J., & Wang, X.-Q. (2021). Interactions among lncRNA/circRNA, miRNA, and mRNA in musculoskeletal degenerative diseases. Frontiers in Cell and Developmental Biology, 9, 753931.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fu, S., Fan, Q., Xu, J., Yu, S., Sun, M., Ji, Y., & Liu, D. (2021). Circ_0008956 contributes to IL-1beta-induced osteoarthritis progression via miR-149-5p/NAMPT axis. International Immunopharmacology, 98, 107857.

    Article  CAS  PubMed  Google Scholar 

  12. Tao, R., Xu, X., Sun, C., Wang, Y., Wang, S., Liu, Z., Zhai, L., Cheng, H., Xiao, M., & Zhang, D. (2015). KPNA2 interacts with P65 to modulate catabolic events in osteoarthritis. Experimental and Molecular Pathology, 99, 245–252.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, P.-y, Wu, J.-g, Gu, J., Zhang, T.-q, Li, L.-f, Wang, S.-q, & Wang, M. (2021). Bioinformatics analysis of miRNA and mRNA expression profiles to reveal the key miRNAs and genes in osteoarthritis. Journal of Orthopaedic Surgery and Research, 16, 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, B., Bai, L., Shen, P., Sun, Y., Chen, Z., & Wen, Y. (2017). Identification of differentially expressed microRNAs in knee anterior cruciate ligament tissues surgically removed from patients with osteoarthritis. International Journal of Molecular Medicine, 40, 1105–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou, Y., Zhao, Z., Yan, L., & Yang, J. (2021). MiR-485-3p promotes proliferation of osteoarthritis chondrocytes and inhibits apoptosis via Notch2 and the NF-kappaB pathway. Immunopharmacology and Immunotoxicology, 43, 370–379.

    Article  CAS  PubMed  Google Scholar 

  16. Xi, P., Zhang, C.-l, S-y, Wu., Liu, L., Li, W.-j, & Li, Y.-m. (2021). Circ circ-IQGAP1 Knockdown alleviates interleukin-1beta-induced osteoarthritis progression via targeting miR-671-5p/TCF4. Orthopaedic Surgery, 13, 1036–1046.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wu, L., Guo, H., Sun, K., Zhao, X., Ma, T., & Jin, Q. (2016). Sclerostin expression in the subchondral bone of patients with knee osteoarthritis. International Journal of Molecular Medicine, 38, 1395–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, J., Fang, L., Ye, L., Ma, S., Huang, H., Lan, X., & Ma, J. (2020). miR-137 targets the inhibition of TCF4 to reverse the progression of osteoarthritis through the AMPK/NF-kappaB signaling pathway. Bioscience Reports. https://doi.org/10.1042/BSR20200466

  19. Tian, J., Gao, S.-G., Li, Y.-S., Cheng, C., Deng, Z.-H., Luo, W., & Zhang, F.-J. (2020). The beta-catenin/TCF-4 pathway regulates the expression of OPN in human osteoarthritic chondrocytes. Journal of Orthopaedic Surgery and Research, 15, 344.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, M., Sampson, E. R., Jin, H., Li, J., Ke, Q. H., Im, H.-J., & Chen, D. (2013). MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Research & Therapy. https://doi.org/10.1186/ar4133

    Article  Google Scholar 

  21. Ni, W., Jiang, C., Wu, Y., Zhang, H., Wang, L., Yik, J. H., Haudenschild, D. R., Fan, S., Shen, S., & Hu, Z. (2021). CircSLC7A2 protects against osteoarthritis through inhibition of the miR-4498/TIMP3 axis. Cell Proliferation, 54, e13047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deng, Z., Chen, F., Liu, Y., Wang, J., Lu, W., Jiang, W., & Zhu, W. (2021). Losartan protects against osteoarthritis by repressing the TGF-beta1 signaling pathway via upregulation of PPARgamma. Journal of Orthopaedic Translation, 29, 30–41.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Luo, X., Wang, J., Wei, X., Wang, S., & Wang, A. (2020). Knockdown of lncRNA MFI2-AS1 inhibits lipopolysaccharide-induced osteoarthritis progression by miR-130a-3p/TCF4. Life Sciences, 240, 117019.

    Article  CAS  PubMed  Google Scholar 

  24. Xue, H., Tu, Y., Ma, T., Wen, T., Yang, T., Xue, L., Cai, M., Wang, F., & Guan, M. (2019). miR-93–5p attenuates IL-1β-induced chondrocyte apoptosis and cartilage degradation in osteoarthritis partially by targeting TCF4. Bone, 123, 129–136.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, Z., Du, D., Chen, A., & Zhu, L. (2018). Circular RNA expression profile of articular chondrocytes in an IL-1beta-induced mouse model of osteoarthritis. Gene, 644, 20–26.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Q., Zhang, X., Hu, X., Dai, L., Fu, X., Zhang, J., & Ao, Y. (2016). Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘sponge’ in human cartilage degradation. Science and Reports, 6, 22572.

    Article  CAS  Google Scholar 

  27. Zhu, H., Zhu, S., Shang, X., Meng, X., Jing, S., Yu, L., & Deng, Y. (2021). Exhausting circ_0136474 and restoring miR-766-3p attenuate chondrocyte oxidative injury in IL-1beta-induced osteoarthritis progression through regulating DNMT3A. Frontiers in Genetics, 12, 648709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kulcheski, F. R., Christoff, A. P., & Margis, R. (2016). Circular RNAs are miRNA sponges and can be used as a new class of biomarker. Journal of Biotechnology, 238, 42–51.

    Article  CAS  PubMed  Google Scholar 

  29. Liao, H.-X., Zhang, Z.-H., Chen, H.-L., Huang, Y.-M., Liu, Z.-L., & Huang, J. (2021). CircHYBID regulates hyaluronan metabolism in chondrocytes via hsa-miR-29b-3p/TGF-beta1 axis. Molecular Medicine, 27, 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, M., Liu, Z., & Zhang, S. (2022). Down-regulation of hsa_circ_0045474 induces macrophage autophagy in tuberculosis via miR-582–5p/TNKS2 axis. Innate Immunity, 28, 11–18.

    Article  CAS  PubMed  Google Scholar 

  31. Xu, J., & Ma, X. (2021). Hsa_circ_0032131 knockdown inhibits osteoarthritis progression via the miR-502-5p/PRDX3 axis. Aging (Albany NY), 13, 15100–15113.

    Article  CAS  PubMed  Google Scholar 

  32. da Silveira, W., Renaud, L., Simpson, J., Glen, W., Hazard, E., Chung, D., & Hardiman, G. (2018). miRmapper: A tool for interpretation of miRNA-mRNA interaction networks. Genes (Basel), 9, 458.

    Article  PubMed  Google Scholar 

  33. Forrest, M. P., Hill, M. J., Quantock, A. J., Martin-Rendon, E., & Blake, D. J. (2014). The emerging roles of TCF4 in disease and development. Trends in Molecular Medicine, 20, 322–331.

    Article  CAS  PubMed  Google Scholar 

  34. Xu, W., Du, M., Zhao, Y., Wang, Q., Sun, W., & Chen, B. (2012). γ-Tocotrienol inhibits cell viability through suppression of β-catenin/Tcf signaling in human colon carcinoma HT-29 cells. The Journal of Nutritional Biochemistry, 23, 800–807.

    Article  CAS  PubMed  Google Scholar 

  35. Jeong, J., Lee, J., & Lee, S.-H. (2015). TCF4 is a molecular target of resveratrol in the prevention of colorectal cancer. International Journal of Molecular Sciences, 16, 10411–10425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bouaziz, W., Sigaux, J., Modrowski, D., Devignes, C.-S., Funck-Brentano, T., Richette, P., Ea, H.-K., Provot, S., Cohen-Solal, M., & Haÿ, E. (2016). Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice. Proceedings of the National Academy of Sciences USA, 113, 5453–5458.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGang Bai.

Ethics declarations

Competing Interests

The authors have no conflict of interest to declare.

Ethical Approval

The present study was approved by the Ethics Committee of Haining People’s Hospital and written informed consent was provided by all patients prior to the study start. All procedures were performed in accordance with the ethical standards of the Institutional Review Board and The Declaration of Helsinki, and its later amendments or comparable ethical standards (Approval number: 201806HN01). And the experiments were approved by the Institutional Animal Care and Use Committee of Haining People’s Hospital and all procedures complied with the National Institutes of Health Guide for the Use of Laboratory Animals (Approval number: 201806HN20).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yu, P. & Bai, L. Hsa_circular RNA_0045474 Facilitates Osteoarthritis Via Modulating microRNA-485-3p and Augmenting Transcription Factor 4. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-023-01019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-01019-z

Keywords

Navigation