Skip to main content
Log in

Isolation and Characterization of Antimicrobial Peptides Isolated from Brevibacillus halotolerans 7WMA2 for the Activity Against Multidrug-Resistant Pathogens

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Multidrug resistance to pathogens has posed a severe threat to public health. The threat could be addressed by antimicrobial peptides (AMPs) with broad-spectrum suppression. In this study, Brevibacillus halotolerans 7WMA2, isolated from marine sediment, produced AMPs against Gram-positive and Gram-negative bacteria. The AMPs were precipitated by ammonium sulfate 30% (w/v) from culture broth and dialyzed by a 1 kDa membrane. Tryptone Soy Agar (TSA) was used for the cultivation and resulted in the largest bacteria-inhibiting zones under aerobic conditions at 25 °C, 48 h. An SDS-PAGE gel overlay test revealed that strain 7WMA2 could produce AMPs of 5–10 kDa and showed no degradation when held at 121 °C for 30 min at a wide pH 2–12 range. The AMPs did not cause toxicity to HeLa cells with concentrations up to 500 µg/mL while increasing the arbitrary unit up to eight times. The study showed that the AMPs produced were unique, with broad-spectrum antimicrobial ability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

However, for this particular study, we do not have a specific data availability statement to include as the data used are proprietary

Abbreviations

AMPs:

Antimicrobial peptides

AU:

Arbitrary unit

MICs:

Minimum inhibitory concentrations

HPLC:

High-performance liquid chromatography

ISP2:

International streptomyces project-2 medium

KCTC:

Korean collection for type cultures

MRSA:

Methicillin-resistant Staphylococcus aureus

SDS:

Sodium dodecyl sulfate

TSA:

Tryptone soy agar

WHO:

World health organization

References

  1. Huang, Z., Hu, Y., Shou, L., & Song, M. (2013). Isolation and partial characterization of cyclic lipopeptide antibiotics produced by Paenibacillus ehimensis B7. BMC Microbiology, 13, 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andersson, D. I., & Hughes, D. (2010). Antibiotic resistance and its cost: Is it possible to reverse resistance? Nature Reviews Microbiology, 8, 260–271.

    Article  CAS  PubMed  Google Scholar 

  3. Bush, K., Courvalin, P., Dantas, G., Davies, J., Eisenstein, B., Huovinen, P., Jacoby, G. A., Kishony, R., Kreiswirth, B. N., Kutter, E., Lerner, S. A., Levy, S., Lewis, K., Lomovskaya, O., Miller, J. H., Mobashery, S., Piddock, L. J. V., Projan, S., Thomas, C. M., Tomasz, A., Tulkens, P. M., Walsh, T.R., Watson, J. D., Witkowski, J., Witte, W., Wright, G., Yeh, P., & Zgurskaya, H. I. (2011). Tackling antibiotic resistance. Nature Reviews Microbiology, 9, 894–896.

  4. David, L., Brata, A. M., Mogosan, C., Pop C., Czako, Z., Muresan, L., Ismaiel, A., Dumitrascu, D. I., Leucuta, D. C., Stanculete, M. F., Iaru, I, & Popa, S. L. (2021). Artificial intelligence and antibiotic discovery. Antibiotics. https://doi.org/10.3390/antibiotics10111376

  5. Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins-a viable alternative to antibiotics? Nature Reviews Microbiology, 11, 95–105.

    Article  CAS  PubMed  Google Scholar 

  6. Umu, Ö. C. O., Bäuerl, C., Oostindjer, M., Pope, P. B., Hernández, P. E., Pérez-Martínez, G., & Diep, D. B. (2016). The potential of class II bacteriocins to modify gut microbiota to improve host health. PLoS One, 11, e0164036–e0164036.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang, X., & Yousef, A. E. (2018). Antimicrobial peptides produced by Brevibacillus spp.: Structure, classification and bioactivity: A mini review. World Journal of Microbiology and Biotechnology. https://doi.org/10.1007/s11274-018-2437-4

    Article  PubMed  Google Scholar 

  8. McIntosh, J. A., Donia, M. S., & Schmidt, E. W. (2009). Ribosomal peptide natural products: Bridging the ribosomal and non-ribosomal worlds. Natural Products Reports, 26, 537–559.

    Article  CAS  Google Scholar 

  9. Martinez, F. A. C., Balciunas, E. M., Converti, A., Cotter, P. D., & De Souza Oliveira, R. P. (2013). Bacteriocin production by Bifidobacterium spp. A review. Biotechnology Advances, 31, 482–488.

    Article  CAS  PubMed  Google Scholar 

  10. Huang, E., Guo, Y., & Yousef, A. E. (2014). Biosynthesis of the new broad-spectrum lipopeptide antibiotic paenibacterin in Paenibacillus thiaminolyticus OSY-SE. Research in Microbiology, 165, 243–251.

    Article  CAS  PubMed  Google Scholar 

  11. Shah, P., Hsiao, F. S. H., Ho, Y. H., & Chen, C. S. (2016). The proteome targets of intracellular targeting antimicrobial peptides. Proteomics, 16, 1225–1237.

    Article  CAS  PubMed  Google Scholar 

  12. Hall, K., Lee, T. H., Mechler, A. I., Swann, M. J., & Aguilar, M. I. (2014). Real-time measurement of membrane conformational states induced by antimicrobial peptides: Balance between recovery and lysis. Science and Reports, 4, 5479.

    Article  CAS  Google Scholar 

  13. Kranjec, C., Ovchinnikov, K. V., Grønseth, T., Ebineshan, K., Srikantam, A., & Diep, D. B. (2020). A bacteriocin-based antimicrobial formulation to effectively disrupt the cell viability of methicillin-resistant Staphylococcus aureus (MRSA) biofilms. npj Biofilms Microbiomes, 6, 58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3, 238–250.

    Article  CAS  PubMed  Google Scholar 

  15. Baindara, P., Chaudhry, V., Mittal, G., Liao, L. M., Matos, C. O., Khatri, N., Franco, O. L., Patil, P. B., & Korpole, S. (2016). Characterization of the antimicrobial peptide penisin, a class Ia novel lantibiotic from Paenibacillus sp. strain A3. Antimicrobial Agents and Chemotherapy, 60, 580–591.

    Article  CAS  PubMed  Google Scholar 

  16. Miljkovic, M., Jovanovic, S., O’Connor, P. M., Mirkovic, N., Jovcic, B., Filipic, B., Dinic, M., Studholme, D. H., Fira, D., Cotter, P. D., & Kojic, M. (2019). Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials. PLoS One, 14, e0216773.

  17. Singh, P. K., Chittpurna, Ashish, Sharma, V., Patil, P. B., & Korpole, S. (2012). Identification, purification, and characterization of laterosporulin, a novel bacteriocin produced by Brevibacillus sp. strain GI-9. PLoS One, 7, e31498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, X., Huang, E., Yuan, C., Zhang, L., & Yousef, A. E. (2016). Isolation and structural elucidation of brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant Gram-positive bacteria. Applied and Environment Microbiology, 82, 2763–2772.

    Article  CAS  Google Scholar 

  19. Sanders, M. E., Morelli, L., & Tompkins, T. A. (2003). Sporeformers as Human Probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Comprehensive Reviews in Food Science and Food Safety, 2, 101–110.

    Article  CAS  PubMed  Google Scholar 

  20. Le Han, H., Jiang, L., Thu Tran, T. N., Muhammad, N., Kim, S. G., Tran Pham, V. P., Ng, Y. J., Khoo, K. S., Chew, K. W., & Phuong Nguyen, T. D. (2022). Whole-genome analysis and secondary metabolites production of a new strain Brevibacillus halotolerans 7WMA2: A potential biocontrol agent against fungal pathogens. Chemosphere, 307, 136004.

    Article  PubMed  Google Scholar 

  21. Daba, H., Pandian, S., Gosselin, J. F., Simard, R. E., Huang, J., & Lacroix, C. (1991). Detection and Activity of a Bacteriocin Produced by Leuconostoc mesenteroides. Applied and Environmental Microbiology, 57(12), 3450–3455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baindara, P., Singh, N., Ranjan, M., Nallabelli, N., Chaudhry, V., Pathania, G. L., Sharma, N., Kumar, A., Patil, P. B., & Korpole, S. (2016). Laterosporulin10: A novel defensin like class iid bacteriocin from brevibacillus sp. strain SKDU10 with inhibitory activity against microbial pathogens. Microbiology (United Kingdom), 162, 1286–1299.

    CAS  Google Scholar 

  23. Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., & Banat, I. M. (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 38, 1015–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nguyen, M. N. T., & Ho-Huynh, T. D. (2016). Selective cytotoxicity of a Vietnamese traditional formula, Nam Dia long, against MCF-7 cells by synergistic effects. BMC Complementary and Alternative Medicine, 16, 220.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M , Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh. N., Theuretzbacher, U., & Magrini, N. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18, 318–327.

  26. Atipairin, A., Songnaka, N., Krobthong, S., Yingchutrakul, Y., Chinnawong, T., & Wanganuttara, T. (2022). Tropical medicine and infectious disease identification and characterization of a potential antimicrobial peptide isolated from soil Brevibacillus sp. WUL10 and Its activity against MRSA pathogens. Tropical Medicine and Infectious Disease. https://doi.org/10.3390/tropicalmed7060093

    Article  PubMed  PubMed Central  Google Scholar 

  27. Benfield, A. H., & Henriques, S. T. (2020). Mode-of-action of antimicrobial peptides: Membrane disruption vs intracellular mechanisms. Frontiers in Medical Technology, 2, 610997.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ansari, A., Zohra, R. R., Tarar, O. M., Qader, S. A. U., & Aman, A. (2018). Screening, purification and characterization of thermostable, protease resistant Bacteriocin active against methicillin resistant Staphylococcus aureus (MRSA). BMC Microbiology. https://doi.org/10.1186/s12866-018-1337-y

    Article  PubMed  PubMed Central  Google Scholar 

  29. Boix, E., Coroller, L., Couvert, O., Planchon, S., van Vliet, A. H. M., Brunt, J., Peck M. W., Rasetti-Escargueil, C., Lemichez. E., Popoff, M. R., & André, S. (2022). Synergistic interaction between pH and NaCl in the limits of germination and outgrowth of Clostridium sporogenes and Group I Clostridium botulinum vegetative cells and spores after heat treatment. Food Microbiology, 106, 104055.

  30. Hoang, L. H., Nga, T. T., Tram, N. T., Trang, L. T., Ha, H. T. T., Hoang, T. H., Anh, D. D., Yen, P. B, Nguyen, N. T., Morita, M., Kenri, T., & Senoh, M. (2022). First report of foodborne botulism due to Clostridium botulinum type A(B) from vegetarian home-canned pate in Hanoi Vietnam. Anaerobe, 77, 102514.

Download references

Funding

This work was supported by the University of Science and Technology- the University of Danang (T2023_). This research was also funded by the University of Science and Technology, The University of Danang, under grant number T2023-02-35.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ho Le Han, Kuan Shiong Khoo or Phuong Thi Dong Nguyen.

Ethics declarations

Conflict of interest

The authors declared that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 435 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Han, H., Pham, P.T.V., Kim, SG. et al. Isolation and Characterization of Antimicrobial Peptides Isolated from Brevibacillus halotolerans 7WMA2 for the Activity Against Multidrug-Resistant Pathogens. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00963-0

Keywords

Navigation