Skip to main content

Advertisement

Log in

Tropical Seaweeds as a Sustainable Resource Towards Circular Bioeconomy: Insights and Way Forward

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Seaweeds are photosynthetic marine macroalgae known for their rapid biomass growth and their significant contributions to global food and feed production. Seaweeds play a crucial role in mitigating various environmental issues, including greenhouse gases, ocean acidification, hypoxia, and eutrophication. Tropical seaweeds are typically found in tropical and subtropical coastal zones with warmer water temperatures and abundant sunlight. These tropical seaweeds are rich sources of proteins, vitamins, minerals, fibers, polysaccharides, and bioactive compounds, contributing to their health-promoting properties and their diverse applications across a range of industries. The productivity, cultivability, nutritional quality, and edibility of tropical seaweeds have been well-documented. This review article begins with an introduction to the growth conditions of selected tropical seaweeds. Subsequently, the multifunctional properties of tropical seaweeds including antioxidant and anti-inflammatory, anti-coagulant, anti-carcinogenic and anti-proliferative, anti-viral, therapeutic and preventive properties were comprehensively evaluated. The potential application of tropical seaweeds as functional foods and feeds, as well as their contributions to sustainable cosmetics, bioenergy, and biofertilizer production were also highlighted. This review serves as a valuable resource for researchers involved in seaweed farming as it provides current knowledge and insights into the cultivation and utilization of seaweeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pereira, L. (2021). Macroalage. Encyclopedia, 1, 177–188.

    Article  Google Scholar 

  2. Duffy, J. E., Benedetti-Cecchi, L., Trinanes, J., Muller-Karger, F. E., Ambo-Rappe, R., Boström, C., Buschmann, A. H., Byrnes, J., Coles, R. G., Creed, J., Cullen-Unsworth, L. C., Diaz-Pulido, G., Duarte, C. M., Edgar, G. J., Fortes, M., Goni, G., Hu, C., Huang, X., Hurd, C. L., … Yaakub, S. M. (2019). Toward a coordinated global observing system for seagrasses and marine macroalgae. Frontiers in Marine Science, 6, 317.

    Article  Google Scholar 

  3. Krause-Jensen, D., & Duarte, C. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 9, 737–742.

    Article  CAS  Google Scholar 

  4. Sultana, F., Wahab, M. A., Nahiduzzaman, M., Mohiuddin, M., Iqbal, M. Z., Shakil, A., Mamun, A. A., Khan, M. S. R., Wong, L., & Asaduzzaman, M. (2023). Seaweed farming for food and nutritional security, climate change mitigation and adaptation, and women empowerment: A review. Aquaculture and Fisheries, 8, 463–480.

    Article  Google Scholar 

  5. Jagtap, A. S., & Meena, S. N. (2022). Chapter 23—Seaweed farming: A perspective of sustainable agriculture and socio-economic development. In M. K. Jhariya, R. S. Meena, A. Banerjee, & S. N. Meena (Eds.), Natural resources conservation and advances for sustainability (pp. 493–501). Elsevier.

    Chapter  Google Scholar 

  6. Levine, I. (2016). Chapter 1 - Algae: A way of life and health. In J. Fleurence & I. Levine (Eds.), Seaweed in health and disease prevention (pp. 1–5). Academic Press.

    Google Scholar 

  7. Rebours, C., Marinho-Soriano, E., Zertuche-González, J. A., Hayashi, L., Vásquez, J. A., Kradolfer, P., Soriano, G., Ugarte, R., Abreu, M. H., Bay-Larsen, I., Hovelsrud, G., Rødven, R., & Robledo, D. (2014). Seaweeds: An opportunity for wealth and sustainable livelihood for coastal communities. Journal of Applied Phycology, 26, 1939–1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lafarga, T., Acién-Fernández, F. G., & Garcia-Vaquero, M. (2020). Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Research, 48, 101909.

    Article  Google Scholar 

  9. Salehi, B., Sharifi-Rad, J., Seca, A. M. L., Pinto, D. C. G. A., Michalak, I., Trincone, A., Mishra, A. P., Nigam, M., Zam, W., & Martins, N. (2019). Current trends on seaweeds: Looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules, 24, 4182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. FAO. (2020). The State of World fisheries and aquaculture 2020. Sustainability in action, Rome

  11. Eggertsen, M., & Halling, C. (2021). Knowledge gaps and management recommendations for future paths of sustainable seaweed farming in the Western Indian Ocean. Ambio, 50, 60–73.

    Article  PubMed  Google Scholar 

  12. Radulovich, R., Umanzor, S., Cabrera, R., & Mata, R. (2014). Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment. Aquaculture, 436, 40–46.

    Article  Google Scholar 

  13. FAO. (2018). The global status of seaweed production, trade and utilization. Globefish research programme Volume 124, Rome

  14. Califano, G., Kwantes, M., Abreu, M. H., Costa, R., & Wichard, T. (2020). Cultivating the macroalgal holobiont: Effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta). Frontiers in Marine Science, 7, 52.

    Article  Google Scholar 

  15. Nursidi, Ali, S. A., Anshary, H., & Tahya, A. M. (2017). Environmental parameters and specific growth of Kappaphycus alvarezii in Saugi Island, South sulawesi Province, Indonesia. Aquaculture, Aquarium, Conservation & Legislation, 10, 698–702.

    Google Scholar 

  16. Kasim, M. R., & Mustafa, A. (2017). Comparison growth of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) cultivation in floating cage and longline in Indonesia. Aquaculture Reports, 6, 49–55.

    Article  Google Scholar 

  17. Razali, M., Rozaiman, M., Laizani, N., Mohammad, S. M., & Zawawi, N. (2019). Application of seaweed (Kappaphycus alvarezii) in Malaysian food products. International Food Research Journal, 26, 1677–1687.

    Google Scholar 

  18. Kumar, K. S., Ganesan, K., & Subba Rao, P. V. (2015). Seasonal variation in nutritional composition of Kappaphycus alvarezii (Doty) Doty-an edible seaweed. Journal of Food Science and Technology, 52, 2751–2760.

    Article  Google Scholar 

  19. Koh, W. Y., Matanjun, P., Lim, X. X., & Kobun, R. (2022). Sensory, physicochemical, and cooking qualities of instant noodles incorporated with red seaweed (Eucheuma denticulatum). Foods, 11, 2669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kasim, M. R., Mustafa, A., & Munier, T. (2016). The growth rate of seaweed (Eucheuma denticulatum) cultivated in longline and floating cage. Aquaculture, Aquarium, Conservation & Legislation, 9, 291–299.

    Google Scholar 

  21. Pang, J. R., Goh, V. M. J., Tan, C. Y., Phang, S. M., Wong, K. H., & Yow, Y. Y. (2018). Neuritogenic and in vitro antioxidant activities of Malaysian Gracilaria manilaensis Yamamoto & Trono. Journal of Applied Phycology, 30, 3253–3260.

    Article  CAS  Google Scholar 

  22. Aroyehun, A. Q., Palaniveloo, K., Ghazali, F., Rizman-Idid, M., & Abdul Razak, S. (2019). Effects of seasonal variability on the physicochemical, biochemical, and nutritional composition of western Peninsular Malaysia Gracilaria manilaensis. Molecules, 24, 3298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruangchuay, R., Dahamat, S., Chirapart, A., & Notoya, M. (2012). Effects of culture conditions on the growth and reproduction of Gut Weed, Ulva intestinalis Linnaeus (Ulvales, Chlorophyta). Songklanakarin Journal of Science and Technology, 34, 501–507.

    Google Scholar 

  24. Castelar, B., Reis, R. P., & dos Santos Calheiros, A. C. (2014). Ulva lactuca and U. flexuosa (Chlorophyta, Ulvophyceae) cultivation in Brazilian tropical waters: Recruitment, growth, and ulvan yield. Journal of Applied Phycology, 26, 1989–1999.

    Article  Google Scholar 

  25. Guo, H., Yao, J., Sun, Z., & Duan, D. (2015). Effect of temperature, irradiance on the growth of the green alga Caulerpa lentillifera (Bryopsidophyceae, Chlorophyta). Journal of Applied Phycology, 27, 879–885.

    Article  CAS  Google Scholar 

  26. Zuldin, W. H. (2019). Growth, biomass yield, and proximate composition of sea vegetable, Caulerpa macrodisca (Bryopsidales, Chlorophyta) cultured in tank. Philippine Journal of Science, 148, 1–6.

    Google Scholar 

  27. Gao, X., Choi, H., Park, S., Sun, Z., & Nam, K. (2019). Assessment of optimal growth conditions for cultivation of the edible Caulerpa okamurae (Caulerpales, Chlorophyta) from Korea. Journal of Applied Phycology, 31, 1855–1862.

    Article  CAS  Google Scholar 

  28. Pikosz, M., & Messyasz, B. (2016). Characteristics of Cladophora and coexisting filamentous algae in relation to environmental factors in freshwater ecosystems in Poland. Oceanological and Hydrobiological Studies, 45, 202–215.

    Article  CAS  Google Scholar 

  29. Saraswati, S., Giriwono, P., Iskandriati, D., Tan, C., & Andarwulan, N. (2019). Sargassum seaweed as a source of anti-inflammatory substances and the potential insight of the tropical species: A review. Marine Drugs, 17, 590.

    Article  CAS  PubMed Central  Google Scholar 

  30. Zou, X. X., Xing, S. S., Su, X., Zhu, J., Huang, H. Q., & Bao, S. X. (2018). The effects of temperature, salinity and irradiance upon the growth of Sargassum polycystum C. Agardh (Phaeophyceae). Journal of Applied Phycology, 30, 1207–1215.

    Article  CAS  Google Scholar 

  31. Bui, H., Luu, T., & Fotedar, R. (2018). Effects of temperature and pH on the growth of Sargassum linearifolium and S. podacanthum in potassium-fortified inland saline water. American Journal of Applied Sciences, 15, 186–197.

    Article  Google Scholar 

  32. Ramdani, M., Elasri, O., Saidi, N., Elkhiati, N., Taybi, F. A., Mostareh, M., Zaraali, O., Haloui, B., & Ramdani, M. (2017). Evaluation of antioxidant activity and total phenol content of Gracilaria bursa-pastoris harvested in Nador lagoon for an enhanced economic valorization. Chemical and Biological Technologies in Agriculture, 4, 28.

    Article  Google Scholar 

  33. Dang, T. T., Bowyer, M. C., Van Altena, I. A., & Scarlett, C. J. (2018). Comparison of chemical profile and antioxidant properties of the brown algae. International Journal of Food Science & Technology, 53, 174–181.

    Article  CAS  Google Scholar 

  34. Quigley, A., Walsh, S. W., Hayes, E., Connolly, D., & Cummins, W. (2018). Effect of seaweed supplementation on tocopherol concentrations in bovine milk using dispersive liquid-liquid microextraction. Journal of Chromatography B, 1092, 152–157.

    Article  CAS  Google Scholar 

  35. Sathya, R., Kanaga, N., Sankar, P., & Jeeva, S. (2017). Antioxidant properties of phlorotannins from brown seaweed Cystoseira trinodis (Forsskål) C Agardh. Arabian Journal of Chemistry, 10, S2608–S2614.

    Article  CAS  Google Scholar 

  36. Cotas, J., Leandro, A., Monteiro, P., Pacheco, D., Figueirinha, A., Gonçalves, A., Silva, G., & Pereira, L. (2020). Seaweed phenolics: From extraction to applications. Marine Drugs, 18, 384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Besednova, N. N., Andryukov, B. G., Zaporozhets, T. S., Kryzhanovsky, S. P., Kuznetsova, T. A., Fedyanina, L. N., Makarenkova, I. D., & Zvyagintseva, T. N. (2020). Algae polyphenolic compounds and modern antibacterial strategies: Current achievements and immediate prospects. Biomedicines, 8, 342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Besednova, N. N., Zvyagintseva, T. N., Kuznetsova, T. A., Makarenkova, I. D., Smolina, T. P., Fedyanina, L. N., Kryzhanovsky, S. P., & Zaporozhets, T. S. (2019). Marine algae metabolites as promising therapeutics for the prevention and treatment of HIV/AIDS. Metabolites, 9, 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar, L. R. G., Paul, P. T., Anas, K. K., Tejpal, C. S., Chatterjee, N. S., Anupama, T. K., Mathew, S., & Ravishankar, C. N. (2022). Phlorotannins-bioactivity and extraction perspectives. Journal of Applied Phycology, 34, 2173–2185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Generalić Mekinić, I., Šimat, V., Rathod, N. B., Hamed, I., & Čagalj, M. (2023). Algal carotenoids: Chemistry, sources, and application. Foods, 12, 2768.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Koutsaviti, A., Ioannou, E., & Roussis, V. (2018). 2 - Bioactive seaweed substances. In Y. Qin (Ed.), Bioactive seaweeds for food applications (pp. 25–52). Academic Press.

    Chapter  Google Scholar 

  42. Foo, S. C., Khoo, K. S., Ooi, C. W., Show, P. L., Khong, N. M. H., & Yusoff, F. M. (2020). Meeting sustainable development goals: Alternative extraction processes for fucoxanthin in algae. Frontiers in Bioengineering and Biotechnology, 8, 546067.

    Article  PubMed  Google Scholar 

  43. Khoo, K. S., Ooi, C. W., Chew, K. W., Foo, S. C., & Show, P. L. (2021). Bioprocessing of Chaetoceros calcitrans for the recovery of fucoxanthin using CO2-based alkyl carbamate ionic liquids. Bioresource Technology, 322, 124520.

    Article  CAS  PubMed  Google Scholar 

  44. Mikami, K., & Hosokawa, M. (2013). Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. International Journal of Molecular Sciences, 14, 13763–13781.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Su, J., Guo, K., Huang, M., Liu, Y., Zhang, J., Sun, L., Li, D., Pang, K. L., Wang, G., Chen, L., Liu, Z., Chen, Y., Chen, Q., & Huang, L. (2019). Fucoxanthin, a marine xanthophyll isolated from Conticribra weissflogii ND-8: Preventive anti-inflammatory effect in a mouse model of sepsis. Frontiers in Pharmacology, 10, 9273.

    Article  Google Scholar 

  46. Guan, B., Chen, K., Tong, Z., Chen, L., Chen, Q., & Su, J. (2022). Advances in fucoxanthin research for the prevention and treatment of inflammation-related diseases. Nutrients, 14, 4768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, X., Wang, S., Cao, S., He, X., Qin, L., He, M., Yang, Y., Hao, J., & Mao, W. (2018). Structural characteristics and anticoagulant property in vitro and in vivo of a seaweed sulfated rhamnan. Marine Drugs, 16, 243.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Patel, S. (2012). Therapeutic importance of sulfated polysaccharides from seaweeds: Updating the recent findings. 3 Biotech, 2, 171–185.

    Article  PubMed Central  Google Scholar 

  49. de Jesus Raposo, M. F., De Morais, R. M., & de Morais, A. M. (2013). Bioactivity and applications of sulphated polysaccharides from marine microalgae. Marine Drugs, 11, 233–252.

    Article  PubMed Central  Google Scholar 

  50. Ngo, D. H., & Kim, S. K. (2013). Sulfated polysaccharides as bioactive agents from marine algae. International Journal of Biological Macromolecules, 62, 70–75.

    Article  CAS  PubMed  Google Scholar 

  51. Kidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. K. (2019). Ulvan: A systematic review of extraction, composition and function. Algal Research, 39, 101422.

    Article  Google Scholar 

  52. Adrien, A., Bonnet, A., Dufour, D., Baudouin, S., Maugard, T., & Bridiau, N. (2019). Anticoagulant activity of sulfated ulvan isolated from the green macroalga Ulva rigida. Marine Drugs, 17, 291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yermak, I. M., Mischchenko, N. P., Davydova, V. N., Glazunov, V. P., Tarbeeva, D. V., Kravchenko, A. O., Pimenova, E. A., & Sorokina, I. V. (2017). Carrageenans-sulfated polysaccharides from red seaweeds as matrices for the inclusion of echinochrome. Marine Drugs, 15, 337.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ale, M., & Meyer, A. (2013). Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Advances, 3, 8131–9141.

    Article  CAS  Google Scholar 

  55. Ustyuzhanina, N. E., Ushakova, N. A., Zyuzina, K. A., Bilan, M. I., Elizarova, A. L., Somonova, O. V., Madzhuga, A. V., Krylov, V. B., Preobrazhenskaya, M. E., Usov, A. I., Kiselevskiy, M. V., & Nifantiev, N. E. (2013). Influence of fucoidans on hemostatic system. Marine Drugs, 11, 2444–2458.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mansur, A. A., Brown, M. T., & Billington, R. A. (2020). The cytotoxic activity of extracts of the brown alga Cystoseira tamariscifolia (Hudson) Papenfuss, against cancer cell lines changes seasonally. Journal of Applied Phycology, 32, 2419–2429.

    Article  Google Scholar 

  57. Liu, Z., Gao, T., Yang, Y., Meng, F., Zhan, F., Jiang, Q., & Sun, X. (2019). Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules, 24, 4286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferdous, U. T., & Balia Yusof, Z. N. (2021). Insight into potential anticancer activity of algal flavonoids: Current status and challenges. Molecules, 26, 6844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ahmed, S. A., Mendonca, P., Elhag, R., & Soliman, K. F. A. (2022). Anticancer effects of fucoxanthin through cell cycle arrest, apoptosis induction, angiogenesis inhibtion, and autophagy modulation. International Journal of Molecular Sciences, 23, 16091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Suganya, A. M., Sanjivkumar, M., Chandran, M. N., Palavesam, A., & Immanuel, G. (2016). Pharmacological importance of sulphated polysaccharide carrageenan from red seaweed Kappaphycus alvarezii in comparison with commercial carrageenan. Biomedicine & Pharmacotherapy, 84, 1300–1312.

    Article  CAS  Google Scholar 

  61. Jazzara, M., Ghannam, A., Soukkarieh, C., & Murad, H. (2016). Anti-proliferative activity of λ-carrageenan through the induction of apoptosis in human breast cancer cells. Iranian Journal of Cancer Prevention, 9, e3836–e3836.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Moussavou, G., Kwak, D. H., Obiang-Obonou, B. W., Maranguy, C. A., Dinzouna-Boutamba, S. D., Lee, D. H., Pissibanganga, O. G., Ko, K., Seo, J. I., & Choo, Y. K. (2014). Anticancer effects of different seaweeds on human colon and breast cancers. Marine Drugs, 12, 4898–4911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van Weelden, G., Bobiński, M., Okła, K., van Weelden, W. J., Romano, A., & Pijnenborg, J. M. A. (2019). Fucoidan structure and activity in relation to anti-cancer mechanisms. Marine Drugs, 17, 32.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lin, Y., Qi, X., Liu, H., Xue, K., Xu, S., & Tian, Z. (2020). The anti-cancer effects of fucoidan: A review of both in vivo and in vitro investigations. Cancer Cell International, 20, 154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao, C., Lin, G., Desheng, W., Liu, D., You, L., Högger, P., Simal-Gandara, J., Wang, M., Martins, J. G., da Costa, Y., Marunaka, M. D., Khan, H., Filosa, R., Wang, S., & Xiao, J. (2020). The algal polysaccharide ulvan suppresses growth of hepatoma cells. Food Front, 1, 83–101.

    Article  Google Scholar 

  66. Abd-Ellatef, G. F., Ahmed, O. M., Abdel-Reheim, E. S., & Abdel-Hamid, A. Z. (2017). Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation. Breast Cancer (Dove Med Press), 9, 67–83.

    CAS  PubMed  Google Scholar 

  67. Ahmadi, A., Zorofchian Moghadamtousi, S., Abubakar, S., & Zandi, K. (2015). Antiviral potential of algae polysaccharides isolated from marine sources: A Review. BioMed Research International, 2015, 825203–825203.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gheda, S. F., El-Adawi, H. I., & El-Deeb, N. M. (2016). Antiviral profile of brown and red seaweed polysaccharides against Hepatitis C virus. Iranian Journal of Pharmaceutical Research, 15, 483–491.

    PubMed  PubMed Central  Google Scholar 

  69. Mahomoodally, F., Lobine, D., Rengasamy, K., Gowrishankar, S., Tewari, D., Zengin, G., Kim, D. H., & Sivanesan, I. (2019). Marine algae: A potential resource of anti-HSV molecules. Processes, 7, 887.

    Article  CAS  Google Scholar 

  70. Shi, Q., Wang, A., Lu, Z., Qin, C., Hu, J., & Yin, J. (2017). Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydrate Research, 453–454, 1–9.

    Article  PubMed  Google Scholar 

  71. Bai, R. G., & Tuvikene, R. (2021). Potential antiviral porperties of industrially important marine algal polysaccharides and their significance in fighting a future viral pandemic. Viruses, 13, 1817.

    Article  Google Scholar 

  72. Gomaa, H. H. A., & Elshoubaky, G. A. (2016). Antiviral activity of sulfated polysaccharides carrageenan from some marine seaweeds. International Journal of Current Pharmaceutical Review and Research, 7, 34–42.

    Google Scholar 

  73. Álvarez-Viñas, M., Souto, S., Flórez-Fernández, N., Torres, M. D., Bandín, I., & Domínguez, H. (2021). Antviral activity of carrageenans and processing implications. Marine Drugs, 19, 437.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Thuy, T. T. T., Ly, B. M., Van, T. T. T., Van Quang, N., Ho Cam, T., Zheng, Y., Seguin-Devaux, C., Mi, B., & Ai, U. (2015). Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydrate Polymers, 115, 122–128.

    Article  CAS  PubMed  Google Scholar 

  75. Kuznetsova, T., Ivanushko, L. A., Persiyanova, E., Shutikova, A. L., Ermakova, S. P., Khotimchenko, M., & Besednova, N. N. (2017). Evaluation of adjuvant effects of fucoidane from brown seaweed Fucus evanescens and its structural analogues for the strengthening vaccines effectiveness. Biomeditsinskaya Khimiya, 63, 553–558.

    Article  CAS  Google Scholar 

  76. Wu, Y. L., Ai, J., Zhao, J. M., Xiong, B., Xin, X. J., Geng, M. Y., Xin, X. L., & Jiang, H. D. (2011). Sulfated polymannuroguluronate inhibits Tat-induced SLK cell adhesion via a novel binding site, a KKR spatial triad. Acta Pharmacologica Sinica, 32, 647–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gomez-Zavaglia, A., Prieto Lage, M. A., Jimenez-Lopez, C., Mejuto, J. C., & Simal-Gandara, J. (2019). The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants, 8, 406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Husni, A., Pratiwi, T., Giri Samudra, A., & Endro Nugroho, A. (2019). In vitro antidiabetic activity of Sargassum hystrix and Eucheuma denticulatum from Yogyakarta beach of Indonesia: Antidiabetic activity of S. hystrix and E. denticulatum. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 55, 1–8.

    Google Scholar 

  79. Reka, P., Banu, T., & Seethalakshmi, M. (2017). Alpha amylase and alpha glucosidase inhibition activity of selected edible seaweeds from south coast area of India. International Journal of Pharmacy and Pharmaceutical Sciences, 9, 64–68.

    Article  CAS  Google Scholar 

  80. Motshakeri, M., Ebrahimi, M., Goh, Y. M., Othman, H. H., Hair-Bejo, M., & Mohamed, S. (2014). Effects of brown seaweed (Sargassum polycystum) extracts on kidney, liver, and pancreas of type 2 diabetic rat model. Evid Based Complementary Altern Med, 2014, 379407.

    Article  Google Scholar 

  81. Balasubramaniam, V., Aznyda, N., Hussin, M., Faradianna, L., Aswir, A. R., & Mohd Fairulnizal, M. N. (2020). Effect of red edible seaweed Eucheuma denticulatum on diet-induced obesity in vivo. Journal of Applied Phycology, 32, 2407–2417.

    Article  CAS  Google Scholar 

  82. Mahadi, M., Zolkapli, E., Teoh, Y., Ibrahim, A. H., & Fauziah, O. (2016). Protective effect of Kappaphycus alvarezii on the heart of hypertensive and hypercholesterolemic induced Sprague-dawley rats. Malaysian Journal of Microscopy, 12, 63–70.

    Google Scholar 

  83. Yuan, D., Huang, Q., Li, C., & Fu, X. (2022). A polysaccharide from Sargassum pallidum reduces obesity in high-fat diet-induced obese mice by modulating glycolipid metabolism. Food & Function, 13, 7181–7191.

    Article  CAS  Google Scholar 

  84. Fidelis, G. P., Silva, C. H. F., Nobre, L., Medeiros, V. P., Rocha, H. A. O., & Costa, L. S. (2019). Antioxidant fucoidans obtained from tropical seaweed protect pre-osteoblastic cells from hydrogen peroxide-induced damage. Marine Drugs, 17, 506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, J. A., Karadeniz, F., Ahn, B. N., Kwon, M. S., Mun, O. J., Bae, M. J., Seo, Y., Kim, M., Lee, S. H., Kim, Y. Y., Mi-Soon, J., & Kong, C. S. (2016). Bioactive quinone derivatives from the marine brown alga Sargassum thunbergii induce anti-adipogenic and pro-osteoblastogenic activities. Journal of the Science of Food and Agriculture, 96, 783–790.

    Article  CAS  PubMed  Google Scholar 

  86. Surget, G., Roberto, V. P., Le Lann, K., Mira, S., Guérard, F., Laizé, V., Poupart, N., Cancela, M. L., & Stiger-Pouvreau, V. (2017). Marine green macroalgae: A source of natural compounds with mineralogenic and antioxidant activities. Journal of Applied Phycology, 29, 575–584.

    Article  CAS  Google Scholar 

  87. Bogie, J., Hoeks, C., Schepers, M., Tiane, A., Cuypers, A., Leijten, F., Chintapakorn, Y., Suttiyut, T., Pornpakakul, S., Struik, D., Kerksiek, A., Liu, H.-B., Hellings, N., Martinez-Martinez, P., Jonker, J. W., Dewachter, I., Sijbrands, E., Walter, J., Hendriks, J., … Mulder, M. (2019). Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer’s disease mouse model. Science and Reports, 9, 4908.

    Article  Google Scholar 

  88. Tirtawijaya, G., Mohibbullah, M., Meinita, M. D. N., Moon, I. S., & Hong, Y. K. (2016). The ethanol extract of the rhodophyte Kappaphycus alvarezii promotes neurite outgrowth in hippocampal neurons. Journal of Applied Phycology, 28, 2515–2522.

    Article  CAS  Google Scholar 

  89. Hu, P., Li, Z., Chen, M., Sun, Z., Ling, Y., Jiang, J., & Huang, C. (2016). Structural elucidation and protective role of a polysaccharide from Sargassum fusiforme on ameliorating learning and memory deficiencies in mice. Carbohydrate Polymers, 139, 150–158.

    Article  CAS  PubMed  Google Scholar 

  90. Ganesan, A. R., Tiwari, U., & Rajauria, G. (2019). Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Science and Human Wellness, 8, 252–263.

    Article  Google Scholar 

  91. Admassu, H., Gasmalla, M. A. A., Yang, R., & Zhao, W. (2018). Identification of bioactive peptides with α-amylase inhibitory potential from enzymatic protein hydrolysates of red seaweed (Porphyra spp). Journal of Agriculture and Food Chemistry, 66, 4872–4882.

    Article  CAS  Google Scholar 

  92. Chin, Y. X., Lim, P. E., Maggs, C., Phang, S. M., Sharifuddin, Y., & Green, B. (2014). Anti-diabetic potential of selected Malaysian seaweeds. Journal of Applied Phycology, 27, 2137–2148.

    Article  Google Scholar 

  93. Sharifuddin, Y., Chin, Y. X., Lim, P. E., & Phang, S. M. (2015). Potential bioactive compounds from seaweed for diabetes management. Marine Drugs, 13, 5447–5491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ezzat, S. M., Bishbishy, M. H. E., Habtemariam, S., Salehi, B., Sharifi-Rad, M., Martins, N., & Sharifi-Rad, J. (2018). Looking at marine-derived bioactive molecules as upcoming anti-diabetic agents: A special emphasis on PTP1B inhibitors. Molecules, 23, 3334.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Austin, C., Stewart, D., Allwood, J. W., & McDougall, G. J. (2018). Extracts from the edible seaweed, Ascophyllum nodosum, inhibit lipase activity in vitro: Contributions of phenolic and polysaccharide components. Food & Function, 9, 502–510.

    Article  CAS  Google Scholar 

  96. Chu, W. L., & Phang, S. M. (2016). Marine algae as a potential source for anti-obesity agents. Marine Drugs, 14, 222.

    Article  Google Scholar 

  97. Mohamed, S., Hashim, S., & Abdul Rahman, H. (2012). Seaweeds: A sustainable functional food for complementary and alternative therapy. Trends in Food Science & Technology, 23, 83–96.

    Article  CAS  Google Scholar 

  98. Qi, H., Huang, L., Liu, X., Liu, D., Zhang, Q., & Liu, S. (2012). Antihyperlipidemic activity of high sulfate content derivative of polysaccharide extracted from Ulva pertusa (Chlorophyta). Carbohydrate Polymers, 87, 1637–1640.

    Article  CAS  Google Scholar 

  99. Walsh, P. J., McGrath, S., McKelvey, S., Ford, L., Sheldrake, G., & Clarke, S. A. (2019). The osteogenic potential of brown seaweed extracts. Marine Drugs, 17, 141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Carson, M. A., & Clarke, S. A. (2018). Bioactive compounds from marine organisms: Potential for bone growth and healing. Marine Drugs, 16, 340.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jeong, Y. T., Baek, S. H., Jeong, S. C., Yoon, Y. D., Kim, O. H., Oh, B. C., Jung, J. W., & Kim, J. H. (2016). Osteoprotective effects of polysaccharide-enriched Hizikia fusiforme processing byproduct in vitro and in vivo models. Journal of Medicinal Food, 19, 805–814.

    Article  CAS  PubMed  Google Scholar 

  102. Jin, X., Zhu, L., Li, X., Jia, J., Zhang, Y., Sun, X., Ma, J., Liu, Z., & Ma, X. (2016). Low-molecular weight fucoidan inhibits the differentiation of osteoclasts and reduces osteoporosis in ovariectomized rats. Molecular Medicine Reports, 15, 890–898.

    Article  PubMed  Google Scholar 

  103. Wang, Y., Xing, M., Cao, Q., Ji, A., Liang, H., & Song, S. (2019). Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies. Marine Drugs, 17, 183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kose, O., Arabaci, T., Yemenoglu, H., Kara, A., Ozkanlar, S., Kayis, S., & Duymus, Z. Y. (2016). Influences of fucoxanthin on alveolar bone resorption in induced periodontitis in rat molars. Marine Drugs, 14, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Olasehinde, T. A., Olaniran, A. O., & Okoh, A. I. (2019). Macroalgae as a valuable source of naturally occurring bioactive compounds for the treatment of Alzheimer’s disease. Marine Drugs, 17, 480–485.

    Article  Google Scholar 

  106. Olasehinde, T. A., Mabinya, L. V., Olaniran, A. O., & Okoh, A. I. (2019). Chemical characterization of sulfated polysaccharides from Gracilaria gracilis and Ulva lactuca and their radical scavenging, metal chelating, and cholinesterase inhibitory activities. International Journal of Food Properties, 22, 100–110.

    Article  CAS  Google Scholar 

  107. Syad, A. N., Rajamohamed, B. S., Shunmugaiah, K. P., & Kasi, P. D. (2016). Neuroprotective effect of the marine macroalga Gelidiella acerosa: Identification of active compounds through bioactivity-guided fractionation. Pharmaceutical Biology, 54, 2073–2081.

    Article  CAS  PubMed  Google Scholar 

  108. Wagle, A., Seong, S. H., Zhao, B. T., Woo, M. H., Jung, H. A., & Choi, J. S. (2018). Comparative study of selective in vitro and in silico BACE1 inhibitory potential of glycyrrhizin together with its metabolites, 18α- and 18β-glycyrrhetinic acid, isolated from Hizikia fusiformis. Archives of Pharmacal Research, 41, 409–418.

    Article  CAS  PubMed  Google Scholar 

  109. Son, H., Um, M., Kim, I., Cho, S., Han, D., & Lee, C. (2016). In vitro screening for anti-dementia activities of seaweed extracts. Journal of the Korean Society of Food Science and Nutrition, 45, 966–972.

    Article  CAS  Google Scholar 

  110. Um, M. Y., Lim, D. W., Son, H. J., Cho, S., & Lee, C. (2018). Phlorotannin-rich fraction from Ishige foliacea brown seaweed prevents the scopolamine-induced memory impairment via regulation of ERK-CREB-BDNF pathway. Journal of Functional Foods, 40, 110–116.

    Article  CAS  Google Scholar 

  111. Wei, H., Gao, Z., Zheng, L., Zhang, C., Liu, Z., Yang, Y., Teng, H., Hou, L., Yin, Y., & Zou, X. (2017). Protective effects of fucoidan on Aβ25-35 and d-gal-induced neurotoxicity in PC12 cells and d-gal-induced cognitive dysfunction in mice. Marine Drugs, 15, 77.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Qin, Y. (2018). 6 - Applications of bioactive seaweed substances in functional food products. In Y. Qin (Ed.), Bioactive seaweeds for food applications (pp. 111–134). Academic Press.

    Chapter  Google Scholar 

  113. Agusman, M., & Wahyuni, T. (2020). The nutritional quality and preference of wheat noodles incorporated with Caulerpa sp. seaweed. International Food Research Journal, 27, 445–453.

    CAS  Google Scholar 

  114. Komatsuzaki, N., Arai, S., Fujihara, S., Shima, J., Wijesekara, R., & de Croos, D. (2019). Development of novel bread by combining seaweed Kappaphycus alvarezii from Sri Lanka and Saccharomyces cerevisiae isolated from Nectarine. Journal of Agricultural Science and Technology B, 9, 339–346.

    CAS  Google Scholar 

  115. Pindi, W., Mah, J., Munsu, E., & Wahab, N. (2017). Effects of addition of Kappaphycus alvarezii on physicochemical properties and lipid oxidation of mechanically deboned chicken meat (MDCM) sausages. British Food Journal, 119, 2229–2239.

    Article  Google Scholar 

  116. Mamat, H., Matanjun, P., Ibrahim, S., Md Amin, S. F., Abdul Hamid, M., & Rameli, A. S. (2014). The effect of seaweed composite flour on the textural properties of dough and bread. Journal of Applied Phycology, 26, 1057–1062.

    Article  CAS  Google Scholar 

  117. Firdaus, M., Nugraha, G. R., & Utari, D. D. (2017). Fortification of seaweed (Eucheuma cottonii) flour on nutrition, iodine, and glycemic index of pasta. IOP Conference Series: Earth and Environmental Science, 89, 012011.

    Google Scholar 

  118. Kumarathunge, N., Jayasinghe, P., & Abeyrathne, N. (2016). Abeyrathne N. Development of sea lettuce (Ulva lactuca) and catla (Catla catla) incorporated protein and fiber rich fish burger. International Journal of Research in Agricultural Sciences, 3, 2348–3997.

    Google Scholar 

  119. Muraguri, E., Wakibia, J., & Kinyuru, J. (2016). Chemical composition and functional properties of selected seaweeds from the Kenya Coast. Journal of Food Research, 5, 114.

    Article  CAS  Google Scholar 

  120. Kumar, A., Krishnamoorthy, E., Devi, H. M., Uchoi, D., Tejpal, C. S., Ninan, G., & Zynudheen, A. A. (2018). Influence of sea grapes (Caulerpa racemosa) supplementation on physical, functional, and anti-oxidant properties of semi-sweet biscuits. Journal of Applied Phycology, 30, 1393–1403.

    Article  CAS  Google Scholar 

  121. Jannat-Alipour, H., Rezaei, M., Shabanpour, B., & Tabarsa, M. (2019). Edible green seaweed, Ulva intestinalis as an ingredient in surimi-based product: Chemical composition and physicochemical properties. Journal of Applied Phycology, 31, 2529–2539.

    Article  CAS  Google Scholar 

  122. Menezes, B. S., Coelho, M., Meza, S., Salas-Mellado, M., & Souza, M. R. A. Z. (2015). Macroalgal biomass as an additional ingredient of bread. International Food Research Journal, 22, 812–817.

    CAS  Google Scholar 

  123. Devi, H., Zynudheen, A., Ninan, G., & Panda, S. K. (2016). Seaweed as an ingredient for nutritional improvement of fish jerky: Seaweed for nutritional improvement of fish jerky. J Food Proc Preserv, 41, e12845.

    Google Scholar 

  124. Nuñez, M., & Picon, A. (2017). Seaweeds in yogurt and quark supplementation: Influence of five dehydrated edible seaweeds on sensory characteristics. International Journal of Food Science & Technology, 52, 431–438.

    Article  Google Scholar 

  125. Keyimu, X. (2013). The effects of using seaweed on the quality of Asian noodles. Journal of Food Processing & Technology, 04, 1000216.

    Article  Google Scholar 

  126. Roohinejad, S., Koubaa, M., Barba, F., Saljoughian, S., Amid, M., & Greiner, R. (2016). Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International, 99, 1066–1083.

    Article  PubMed  Google Scholar 

  127. Moroney, N. C., O’Grady, M. N., O’Doherty, J. V., & Kerry, J. P. (2013). Effect of a brown seaweed (Laminaria digitata) extract containing laminarin and fucoidan on the quality and shelf-life of fresh and cooked minced pork patties. Meat Science, 94, 304–311.

    Article  CAS  PubMed  Google Scholar 

  128. Moroney, N. C., O’Grady, M. N., Lordan, S., Stanton, C., & Kerry, J. P. (2015). Seaweed polysaccharides (laminarin and fucoidan) as functional ingredients in pork meat: An evaluation of anti-oxidative potential, thermal stability and bioaccessibility. Marine Drugs, 13, 2447–2464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Din, N. A. S., Mohd Alayudin, S., Sofian-Seng, N. S., Rahman, H. A., Mohd Razali, N. S., Lim, S. J., & Wan Mustapha, W. A. (2022). Brown algae as functional food source of fucoxanthin: A review. Foods, 11, 2235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cox, S., & Abu-Ghannam, N. (2013). Incorporation of Himanthalia elongata seaweed to enhance the phytochemical content of breadsticks using response surface methodology (RSM). International Food Research Journal, 20, 1537–1545.

    Google Scholar 

  131. O’Sullivan, A. N., O’Callaghan, Y., O’Grady, M., Waldron, D., Smyth, T., O’Brien, N., & Kerry, J. (2014). An examination of the potential of seaweed extracts as functional ingredients in milk. International Journal of Dairy Technology, 67, 182–193.

    Article  Google Scholar 

  132. Morais, T., Inacio, A., Coutinho, T., Ministro, M., Cotas, J., Pereira, L., & Bahcevandziev, K. (2020). Seaweed potential in the animal feed: A review. Journal of Marine Science and Engineering, 8, 559.

    Article  Google Scholar 

  133. Cardoso, C., Gomes, R., Rato, A., Joaquim, S., Machado, J., Gonçalves, J. F., Vaz-Pires, P., Magnoni, L., Matias, D., Coelho, I., Delgado, I., Castanheira, I., Matos, J., Ozório, R., Bandarra, N., & Afonso, C. (2019). Elemental composition and bioaccessibility of farmed oysters (Crassostrea gigas) fed different ratios of dietary seaweed and microalgae during broodstock conditioning. Food Science & Nutrition, 7, 2495–2504.

    Article  CAS  Google Scholar 

  134. Makkar, H. P. S., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F., & Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1–17.

    Article  CAS  Google Scholar 

  135. Ehr, I. J., Persia, M. E., & Bobeck, E. A. (2017). Comparative omega-3 fatty acid enrichment of egg yolks from first-cycle laying hens fed flaxseed oil or ground flaxseed. Poultry Science, 96, 1791–1799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kulshreshtha, G., Critchley, A., Rathgeber, B., Stratton, G., Banskota, A., Hafting, J., & Prithiviraj, B. (2020). Antimicrobial effects of selected, cultivated red seaweeds and their components in combination with tetracycline, against poultry pathogen Salmonella Enteritidis. Journal of Marine Science and Engineerin, 8, 511.

    Article  Google Scholar 

  137. Kamunde, C., Sappal, R., & Melegy, T. M. (2019). Brown seaweed (AquaArom) supplementation increases food intake and improves growth, antioxidant status and resistance to temperature stress in Atlantic salmon. Salmo salar. PLoS One, 14, e0219792.

    Article  CAS  PubMed  Google Scholar 

  138. Noël, L., Chekri, R., Millour, S., Vastel, C., Kadar, A., Sirot, V., Leblanc, J. C., & Guérin, T. (2012). Li, Cr, Mn Co, Ni, Cu, Zn, Se and Mo levels in foodstuffs from the Second French TDS. Food Chemistry, 132, 1502–1513.

    Article  PubMed  Google Scholar 

  139. Morais, T., Cotas, J., Pacheco, D., & Pereira, L. (2021). Seaweeds compounds: An ecosustainable source of cosmetic ingredients? Cosmetics, 8, 8.

    Article  CAS  Google Scholar 

  140. Pereira, L. (2018). Seaweeds as source of bioactive substances and skin care therapy—Cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics, 5, 68.

    Article  CAS  Google Scholar 

  141. Hama, S., Takahashi, K., Inai, Y., Shiota, K., Sakamoto, R., Yamada, A., Tsuchiya, H., Kanamura, K., Yamashita, E., & Kogure, K. (2012). Protective effects of topical application of a poorly soluble antioxidant astaxanthin liposomal formulation on ultraviolet-induced skin damage. Journal of Pharmaceutical Sciences, 101, 2909–2916.

    Article  CAS  PubMed  Google Scholar 

  142. Lyons, N. M., & O’Brien, N. M. (2002). Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture. Journal of Dermatological Science, 30, 73–84.

    Article  CAS  PubMed  Google Scholar 

  143. Ferreres, F., Lopes, G., Gil-Izquierdo, A., Andrade, P. B., Sousa, C., Mouga, T., & Valentão, P. (2012). Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: Approaches to hyaluronidase inhibitory capacity and antioxidant properties. Marine Drugs, 10, 2766–2781.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sanjeewa, K. K. A., Kim, E. A., Son, K. T., & Jeon, Y. J. (2016). Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review. Journal of Photochemistry and Photobiology, B: Biology, 162, 100–105.

    Article  CAS  PubMed  Google Scholar 

  145. Rodríguez-Luna, A., Ávila-Román, J., González-Rodríguez, M. L., Cózar, M. J., Rabasco, A. M., Motilva, V., & Talero, E. (2018). Fucoxanthin-containing cream prevents epidermal hyperplasia and UVB-induced skin erythema in mice. Marine Drugs, 16, 378.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lourenço-Lopes, C., Fraga-Corral, M., Jimenez-Lopez, C., Carpena, M., Pereira, A. G., Garcia-Oliveira, P., Prieto, M. A., & Simal-Gandara, J. (2021). Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends in Food Science & Technology, 117, 163–181.

    Article  Google Scholar 

  147. Narayanaswamy, R., Jo, B. W., Choi, S. K., & Ismail, I. S. (2013). Fucoidan: Versatile cosmetic ingredient An overview. Journal of Applied Cosmetology, 31, 131–138.

    Google Scholar 

  148. Fitton, J. H., Dell’Acqua, G., Gardiner, V. A., Karpiniec, S. S., Stringer, D. N., & Davis, E. (2015). Topical benefits of two fucoidan-rich extracts from marine macroalgae. Cosmetics, 2, 66–81.

    Article  CAS  Google Scholar 

  149. Fernando, S., Sanjeewa, A., Samarakoon, K., Kim, H. S., Gunasekara, U., Park, Y. J., Abeytunga, T., Lee, W., & Jeon, Y. J. (2018). The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: Antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities. Journal of Applied Phycology, 30, 3223–3232.

    Article  Google Scholar 

  150. Lin, J., Jiao, G., & Kermanshahi-pour, A. (2022). Algal polysaccharides-based hydrogels: Extraction, synthesis, characterization, and applications. Marine Drugs, 20, 306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chrapusta, E., Kaminski, A., Duchnik, K., Bober, B., Adamski, M., & Bialczyk, J. (2017). Mycosporine-like amino acids: Potential health and beauty ingredients. Marine Drugs, 15, 326.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Offei, F., Mensah, M., Kemausuor, F., & Thygesen, A. (2019). A biorefinery approach to bioethanol and bioelectricity co-production from tropical seaweeds. Journal of Applied Phycology, 31, 3899–3913.

    Article  CAS  Google Scholar 

  153. Jambo, S. A., Abdulla, R., Mohd Azhar, S. H., Marbawi, H., Gansau, J. A., & Ravindra, P. (2016). A review on third generation bioethanol feedstock. Renewable and Sustainable Energy Reviews, 65, 756–769.

    Article  CAS  Google Scholar 

  154. Montingelli, M., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961–972.

    Article  CAS  Google Scholar 

  155. Fernand, F., Israel, A., Skjermo, J., Wichard, T., Timmermans, K. R., & Golberg, A. (2017). Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges. Renewable and Sustainable Energy Reviews, 75, 35–45.

    Article  CAS  Google Scholar 

  156. Marquez, G. P. B., Santiañez, W. J. E., Trono, G. C., Montaño, M. N. E., Araki, H., Takeuchi, H., & Hasegawa, T. (2014). Seaweed biomass of the Philippines: Sustainable feedstock for biogas production. Renewable and Sustainable Energy Reviews, 38, 1056–1068.

    Article  Google Scholar 

  157. Khambhaty, Y., Mody, K., Gandhi, M. R., Thampy, S., Maiti, P., Brahmbhatt, H., Eswaran, K., & Ghosh, P. K. (2012). Kappaphycus alvarezii as a source of bioethanol. Bioresource Technology, 103, 180–185.

    Article  CAS  PubMed  Google Scholar 

  158. Hessami, M., Phang, S. M., Salleh, A., & Rabiei, R. (2017). Evaluation of tropical seaweeds as feedstock for bioethanol production. International Journal of Environmental Science and Technology, 15, 1–16.

    Google Scholar 

  159. Mansa, R. F., Chen, W. F., Yeo, S. J., Farm, Y. Y., Bakar, H. A., & Sipaut, C. S. (2013). Fermentation study on macroalgae Eucheuma cottonii for bioethanol production via varying acid hydrolysis. In R. Pogaku & R. Sarbatly (Eds.), Advances in biofuels (pp. 219–240). Springer.

    Chapter  Google Scholar 

  160. El-Sheekh, M. M., Bases, E. A., El-Shenody, R. A., & El Shafay, S. M. (2021). Lipid extraction from some seaweeds and evaluation of its biodiesel production. Biocatalysis and Agricultural Biotechnology, 35, 102087.

    Article  CAS  Google Scholar 

  161. Cho, Y., Kim, H., & Kim, S. K. (2013). Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess and Biosystems Engineering, 36, 713–719.

    Article  CAS  PubMed  Google Scholar 

  162. Borines, M. G., de Leon, R. L., & Cuello, J. L. (2013). Bioethanol production from the macroalgae Sargassum spp. Bioresource Technology, 138, 22–29.

    Article  CAS  PubMed  Google Scholar 

  163. Osman, M. E. H., Abo-Shady, A. M., Elshobary, M. E., Abd El-Ghafar, M. O., & Abomohra, A. E. F. (2020). Screening of seaweeds for sustainable biofuel recovery through sequential biodiesel and bioethanol production. Environmental Science and Pollution Research, 27, 32481–32493.

    Article  CAS  PubMed  Google Scholar 

  164. Petraityte, D., Arlauskiene, A., & Ceseviciene, J. (2022). Use of digestate as an alternative to mineral fertilizer: Effects on soil mineral nitrogen and winter wheat nitrogen accumulation in clay loam. Agronomy, 12, 402.

    Article  CAS  Google Scholar 

  165. Saqib, A., Rizwan, M., Rashid, T. D. U., Ibrahim, M., Gill, S., & Mehmood, M. (2013). Marine macro algae Ulva: A potential feed-stock for bio-ethanol and biogas production. Asian Journal of Agriculture and Biology, 1, 155–163.

    Google Scholar 

  166. Yulita, R., Pujiastuti, D. Y., & Alamsjah, M. A. (2018). Alternative bioenergy through the utilization of Kappaphycus alvarezii waste as a substitution of substrate for biogas products. IOP Conference Series: Earth and Environmental Science, 137, 012057.

    Google Scholar 

  167. Oliveira, J. V., Alves, M. M., & Costa, J. C. (2015). Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil. Bioresource Technology, 175, 480–485.

    Article  CAS  PubMed  Google Scholar 

  168. Nabti, E., Jha, B., & Hartmann, A. (2016). Impact of seaweeds on agricultural crop production as biofertilizer. International Journal of Environmental Science and Technology, 14, 1119–1134.

    Article  Google Scholar 

  169. Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants (Basel), 10, 531.

    Article  CAS  PubMed  Google Scholar 

  170. Al-Ghamdi, A. A., & Elansary, H. O. (2018). Synergetic effects of 5-aminolevulinic acid and Ascophyllum nodosum seaweed extracts on Asparagus phenolics and stress related genes under saline irrigation. Plant Physiology and Biochemistry, 129, 273–284.

    Article  CAS  PubMed  Google Scholar 

  171. Digruber, T., Sass, L., Cseri, A., Paul, K., Nagy, A. V., Remenyik, J., Molnár, I., Vass, I., Toldi, O., Gyuricza, C., & Dudits, D. (2018). Stimulation of energy willow biomass with triacontanol and seaweed extract. Industrial Crops and Products, 120, 104–112.

    Article  CAS  Google Scholar 

  172. Valencia, R. T., Acosta, L. S., Hernández, M. F., Rangel, P. P., Robles, M. Á. G., Cruz, R. D. C. A., & Vázquez, C. V. (2018). Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (Cucumis sativus L.) fruit. Agronomy, 8, 264.

    Article  CAS  Google Scholar 

  173. Ali, O., Ramsubhag, A., & Jayaraman, J. (2019). Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS ONE, 14, e0216710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kapur, B., Sarıdaş, M. A., Çeliktopuz, E., Kafkas, E., & Paydaş Kargı, S. (2018). Health and taste related compounds in strawberries under various irrigation regimes and bio-stimulant application. Food Chemistry, 263, 67–73.

    Article  CAS  PubMed  Google Scholar 

  175. Agarwal, P. K., Dangariya, M., & Agarwal, P. (2021). Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Research, 58, 102363.

    Article  Google Scholar 

  176. El Boukhari, M. E. M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants (Basel, Switzerland), 9, 359.

    PubMed  Google Scholar 

  177. Prajapati, A., Jain, S., Chongtham, S., Maheshwari, M., Patel, C., Patel, R., Patel, C., Singh, N., & Prajapati, A. (2015). Evaluation of seaweed extract on growth and yield of potato. Environment and Ecology, 34, 605–608.

    Google Scholar 

  178. Pal, A., Dwivedi, S. K., Maurya, P. K., & Kanwar, P. (2015). Effect of seaweed saps on growth, yield, nutrient uptake and economic improvement of maize (sweet corn). Journal of Applied and Natural Science, 7, 970–975.

    Article  CAS  Google Scholar 

  179. Sithamparanathan, S., Balasooriya, W., Arasakesary, S., & Gnanavelrajah, N. (2019). Effect of seaweed extract (Kappaphycus alvarezii) on the growth, yield and nutrient uptake of leafy vegetable Amaranthus polygamous. Tropical Agricultural Research, 30, 81.

    Article  Google Scholar 

  180. Begum, M., Bordoloi, B., Singha, D., & Ojha, N. (2018). Role of seaweed extract on growth, yield and quality of some agricultural crops: A review. Agricultural Reviews, 39, 321–326.

    Google Scholar 

  181. Dalwale, M. A., Singh, R. and Singh, G. (2022) Influence of biofertilizers and foliar application of seaweed (Kappaphycus alvarezii) extract on yield and economics of sorghum (Sorghum bicolor L.) 11, 91–93.

  182. de Castro, T. A., Tavares, O. C., de Oliveira Torchia, D. F., da Silva, H. F., de Moura, O. V., Cantarino, R. E., de Abreu, L. S., Viêgas, C. V., do Amaral Vendramini, A. L., Santos, L. A., & Berbara, R. L. (2023). Algal Research, 71, 103040.

    Article  Google Scholar 

  183. Sharma, S., Chen, C., Khatri, K., Rathore, M. S., & Pandey, S. P. (2019). Gracilaria dura extract confers drought tolerance in wheat by modulating abscisic acid homeostasis. Plant Physiology and Biochemistry, 136, 143–154.

    Article  CAS  PubMed  Google Scholar 

  184. Layek, J., Das, A., Idapuganti, R., Sarkar, D., Ghosh, A., Zodape, S., Lal, R., Yadav, G., Panwar, A. S., Ngachan, S., & Meena, R. S. (2018). Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. Journal of Applied Phycology, 30, 547–558.

    Article  CAS  Google Scholar 

  185. Jumadi, O., Annisi, A. D., Djawad, Y. A., Bourgougnon, N., Amaliah, N. A., Asmawati, A., Manguntungi, A. B., & Inubushi, K. (2023). Brown algae (Sargassum sp) extract prepared by indigenous microbe fermentation enhanced tomato germination parameters. Biocatalysis and Agricultural Biotechnology, 47, 102601.

    Article  CAS  Google Scholar 

  186. El, M., Ragab, M. E., Youssef, S., & Metwally, A. (2014). Influence of foliar spraying of seaweed extract on growth, yield and quality of strawberry plants. Journal of Applied Sciences Research, 10, 88–94.

    Google Scholar 

  187. Uthirapandi, V., Suriya, S., Boomibalagan, P., Eswaran, S., Ramya, S. S., Vijayanand, N., & Kathiresan, D. (2018). Bio-fertilizer potential of seaweed liquid extracts of marine macro algae on growth and biochemical parameters of Ocimum sanctum. J Pharmacogn Phytochem, 7, 3528–3532.

    CAS  Google Scholar 

  188. Dumale, J., Divina, C., & Gamoso, G. (2016). Plant growth promoting effect, gibberellic acid and auxin like activity of liquid extract of Caulerpa racemosa on rice seed germination. International Journal of Agricultural Technology, 12, 2219–2226.

    Google Scholar 

  189. Ammaturo, C., Pacheco, D., Cotas, J., Formisano, L., Ciriello, M., Pereira, L., & Bahcevandziev, K. (2023). Use of Chlorella vulgaris and Ulva lactuca as biostimulant on lettuce. Applied Sciences, 13, 9046.

    Article  CAS  Google Scholar 

  190. Castellanos-Barriga, L. G., Santacruz-Ruvalcaba, F., Hernández-Carmona, G., Ramírez-Briones, E., & Hernández-Herrera, R. M. (2017). Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). Journal of Applied Phycology, 29, 2479–2488.

    Article  CAS  Google Scholar 

  191. Oluwadare, D. A., Carney, H. E., Sarker, M. H., & Ennis, C. J. (2020). Kinetics of water-extractable zinc release from seaweed (Fucus serratus) as soil amendment. Journal of Plant Nutrition and Soil Science, 183, 136–143.

    Article  CAS  Google Scholar 

  192. Possinger, A. R., & Amador, J. A. (2016). Preliminary evaluation of seaweed application effects on soil quality and yield of sweet corn (Zea mays L.). Communications in Soil Science and Plant Analysis, 47, 121–135.

    Article  CAS  Google Scholar 

  193. Saberi Riseh, R., Gholizadeh Vazvani, M., Ebrahimi-Zarandi, M., & Skorik, Y. A. (2022). Alginate-induced disease resistance in plants. Polymers (Basel), 14, 661.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Cyberjaya, Malaysia for UoC Research Grant Scheme [Grant No: CRGS/URGS/2023_007] and the National Science and Technology Council, Taiwan [Grant No: NSTC111-2221-E-155-007-MY3].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Chi-Wei Lan or Hui-Suan Ng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kee, P.E., Phang, S.M., Lan, J.CW. et al. Tropical Seaweeds as a Sustainable Resource Towards Circular Bioeconomy: Insights and Way Forward. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00940-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00940-7

Keywords

Navigation