Skip to main content

Advertisement

Log in

An Insight Into the Role of Alpha-Fetoprotein (AFP) in the Development and Progression of Hepatocellular Carcinoma

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the primary malignancy of hepatocytes and the second most common cause of cancer-related mortality across the globe. Despite significant advancements in screening, diagnosis, and treatment modalities for HCC, the mortality-to-incidence ratio remain unacceptably high. A recent study indicates that a minor population of HCCs are AFP negative or express the normal range of AFP levels. Although it is a gold standard and a more reliable biomarker in the advanced stage of HCC and poorly differentiated tumors, it does not serve as a suitable means for screening HCC. AFP plays a significant role in the development and progression of HCC and understanding its role is crucial. By examining the molecular mechanisms involved in AFP-mediated tumorigenesis, we can better understand HCC pathogenesis and identify potential therapeutic targets. This article details the role of alpha-fetoprotein (AFP) in the carcinogenic transformation of hepatocytes. The article also focuses on information about the structure, biosynthesis, and regulation of AFP at the gene level. Additionally, it discusses the immune evasion, metastasis, and control of gene expression that AFP mediates during HCC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

AFP:

Alpha-fetoprotein

AFPR:

Alpha-fetoprotein receptor

AKT:

Protein kinase B

AP-1:

Activator protein-1

ATRA:

All-trans retinoic acid

Bcl-2:

B-cell lymphoma 2

C/EBP:

CCAAT/enhancer-binding protein

CBP:

CREB-binding protein

CTLs:

Cytotoxic T lymphocytes

CXCL2:

CXC motif chemokine ligand 2

CXCR4:

CXC motif chemokine receptor 4

DC:

Dendritic cells

DCP:

Des carboxy prothrombin

E-cadherin:

Epithelial cadherin

ECM:

Extracellular matrix

EMT:

Epithelial–mesenchymal transition

EpCAM:

Epithelial cell adhesion molecule

Fam 20CKinase:

Family with sequence similarity 20, member C kinase

Fn14:

Fibroblast growth factor-inducible 14

Fox A:

Forkhead box A

FTF:

Four and a half LIM domain protein

GADD153:

Growth arrest and DNA damage-inducible protein 153

GADD45a:

Growth arrest and DNA damage-inducible protein 45 alpha

GRC:

Glucocorticoid receptor complex

HBV:

Hepatitis B virus

HBx:

Hepatitis B virus X protein

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HIF-1α:

Hypoxia-inducible factor 1-alpha

HNF:

Hepatocyte nuclear factor

IL-12:

Interleukin-12

K19:

Keratin 19

LCA:

Lens culinaris agglutinin

MAPK:

Mitogen-activated protein kinase.

MMP2/9:

Matrix Metalloproteinase 2/9

MPTP:

Mitochondrial Permeability Transition Pore

mRNA:

Messenger RNA

Mtor:

Mammalian target of rapamycin

N-cadherin:

Neural cadherin

NF-1:

Nuclear factor 1

NK cells:

Natural killer cells

N-ras:

Neuroblastoma RAS viral oncogene homolog

P21:

Cyclin-dependent kinase inhibitor 1

P53:

Tumor protein 53

PD-1:

Programmed cell death protein-1

PDL1:

Programmed Cell death-ligand 1

PI3K:

Phosphoinositide 3-kinase

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

PTEN:

Phosphatase and tensin homolog

PTM:

Post-translational modification

RAR:

Retinoic acid receptor

RNAi:

RNA interference

siRNA:

Silencing RNA

SIRT1:

Sirtuin 1

Sp-1:

Specificity protein

TILs:

Tumor-infiltrating lymphocytes

TNFRSF12A:

Tumor necrosis factor receptor super family12A

TNM:

Tumor, node, metastasis staging system

TWEAK:

TNF-related weak inducer of apoptosis

US:

Ultra sound

ZBTB20:

Zinc finger and BTB domain-containing protein 20

Zhx2:

Zinc finger and homeoboxes protein 2

References

  1. Galle, P. R., Foerster, F., Kudo, M., Chan, S. L., Llovet, J. M., Qin, S., Schelman, W. R., Chintharlapalli, S., Abada, P. B., Sherman, M., & Zhu, A. X. (2019). Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver International, 12, 2214–2229.

    Article  Google Scholar 

  2. Adigun OO, Yarrarapu SNS, Khetarpal S. (2022). Alpha Fetoprotein. In: StatPearls. Treasure Island (FL): StatPearls Publishing

  3. Suresh, D., Srinivas, A. N., & Kumar, D. P. (2020). Etiology of hepatocellular carcinoma: Special focus on fatty liver disease. Frontiers in Oncology, 10, 601710.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Manuc, D., Preda, C. M., Sandra, I., Baicus, C., Cerban, R., Constantinescu, I., Olteanu, A. O., Ciora, C. A., Manuc, T., Chiriac, D. E., & Chifulescu, A. E. (2020). Signification of serum alpha-fetoprotein levels in cases of compensated cirrhosis and hepatitis C virus without hepatocellular carcinoma. Journal of Medicine and Life, 1, 68–74.

    Article  Google Scholar 

  5. Di Carlo, I., Mannino, M., Toro, A., Ardiri, A., Galia, A., Cappello, G., & Bertino, G. (2012). Persistent increase in alpha-fetoprotein level in a patient without underlying liver disease who underwent curative resection of hepatocellular carcinoma. A case report and review of the literature. World Journal of Surgical Oncology, 10, 1–6.

    Article  Google Scholar 

  6. Charrière, B., Maulat, C., Suc, B., & Muscari, F. (2016). Contribution of alpha-fetoprotein in liver transplantation for hepatocellular carcinoma. World Journal of Hepatology, 21, 881–890.

    Article  Google Scholar 

  7. Huang, J., Liu, F. C., Li, L., Zhou, W. P., Jiang, B. G., & Pan, Z. Y. (2020). Nomograms to predict the long-time prognosis in patients with alpha-fetoprotein negative hepatocellular carcinoma following radical resection. Cancer Medicine, 8, 2791–2802.

    Article  Google Scholar 

  8. Hadziyannis, E., Sialevris, K., Georgiou, A., & Koskinas, J. (2013). Analysis of serum alpha fetoprotein-L3% and des- gamma carboxyprothrombin markers in cases with misleading hepatocellular carcinoma total alpha fetoprotein levels. Oncology Reports, 29, 835–839.

    Article  CAS  PubMed  Google Scholar 

  9. Abduljabbar, A. H. (2023). Diagnostic accuracy of ultrasound and alpha-fetoprotein measurement for hepatocellular carcinoma surveillance: A retrospective comparative study. Egyptian Journal of Radiology and Nuclear Medicine, 54, 31.

    Article  Google Scholar 

  10. Yen, Y. H., Liu, Y. W., Li, W. F., Wang, C. C., Yong, C. C., Lin, C. C., & Lin, C. Y. (2023). Alpha-fetoprotein combined with radiographic tumor burden score to predict overall survival after liver resection in hepatocellular carcinoma. Cancers (Basel), 15(4), 1203.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Arrieta, O., Cacho, B., Morales-Espinosa, D., Ruelas-Villavicencio, A., Flores-Estrada, D., & Hernández-Pedro, N. (2007). The progressive elevation of alpha fetoprotein for the diagnosis of hepatocellular carcinoma in patients with liver cirrhosis. BMC Cancer, 7(1), 1–9.

    Article  Google Scholar 

  12. Głowska-Ciemny, J., Szymański, M., Kuszerska, A., Malewski, Z., von Kaisenberg, C., & Kocyłowski, R. (2023). The role of alpha-fetoprotein (AFP) in contemporary oncology: The path from a diagnostic biomarker to an anticancer drug. International Journal of Molecular Sciences., 24(3), 2539.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee, C. W., Tsai, H. I., Lee, W. C., Huang, S. W., Lin, C. Y., Hsieh, Y. C., Kuo, T., Chen, C. W., & Yu, M. C. (2019). Normal alpha-fetoprotein hepatocellular carcinoma: Are they really normal? Journal of Clinical Medicine., 8(10), 1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carr, B. I., Akkiz, H., Üsküdar, O., Yalçın, K., Guerra, V., Kuran, S., Karaoğullarından, Ü., Altıntaş, E., Özakyol, A., Tokmak, S., & Ballı, T. (2018). HCC with low-and normal-serum alpha-fetoprotein levels. Clinical Practice (London, England), 15(1), 453.

    PubMed  Google Scholar 

  15. Galle, P. R., Foerster, F., Kudo, M., Chan, S. L., Llovet, J. M., Qin, S., Schelman, W. R., Chintharlapalli, S., Abada, P. B., Sherman, M., & Zhu, A. X. (2019). Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver International, 39(12), 2214–2229.

    Article  PubMed  Google Scholar 

  16. Hu, X., Chen, R., Wei, Q., & Xu, X. (2022). The Landscape of alpha fetoprotein in hepatocellular carcinoma: Where are we? International Journal of Biological Sciences., 18(2), 536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muscari, F., & Maulat, C. (2020). Preoperative alpha-fetoprotein (AFP) in hepatocellular carcinoma (HCC) is this 50-year biomarker still up-to-date. Translational Gastroenterology and Hepatology. https://doi.org/10.21037/tgh.2019.12.09

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jasirwan, C. O., Fahira, A., Siregar, L., & Loho, I. (2020). The alpha-fetoprotein serum is still reliable as a biomarker for the surveillance of hepatocellular carcinoma in Indonesia. BMC Gastroenterology., 20(1), 1–8.

    Article  Google Scholar 

  19. Chan, S. L., Mo, F. K., Johnson, P. J., Hui, E. P., Ma, B. B., Ho, W. M., Lam, K. C., Chan, A. T., Mok, T. S., & Yeo, W. (2009). New utility of an old marker: Serial alpha-fetoprotein measurement in predicting radiologic response and survival of patients with hepatocellular carcinoma undergoing systemic chemotherapy. Journal of Clinical Oncology, 27(3), 446–452.

    Article  CAS  PubMed  Google Scholar 

  20. Lai, Q., Avolio, A. W., Manzia, T. M., Sorge, R., Agnes, S., Tisone, G., Berloco, P. B., & Rossi, M. (2012). Combination of biological and morphological parameters for the selection of patients with hepatocellular carcinoma waiting for liver transplantation. Clinical Transplantation, 26(2), E125–E131.

    Article  PubMed  Google Scholar 

  21. Kawaoka, T., Aikata, H., Murakami, E., Nakahara, T., Naeshiro, N., Tanaka, M., Honda, Y., Miyaki, D., Nagaoki, Y., Takaki, S., Hiramatsu, A., Waki, K., Takahashi, S., & Chayama, K. (2012). Evaluation of the mRECIST and α-fetoprotein ratio for stratification of the prognosis of advanced-hepatocellular-carcinoma patients treated with sorafenib. Oncology, 83(4), 192–200.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, L., Zhao, Y., Jia, J., Chen, H., Bai, W., Yang, M., Yin, Z., He, C., Zhang, L., Guo, W., Niu, J., Yuan, J., Cai, H., Xia, J., Fan, D., & Han, G. (2016). The prognostic value of alpha-fetoprotein response for advanced-stage hepatocellular carcinoma treated with sorafenib combined with transarterial chemoembolization. Scientific Reports, 6, 19851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paul, S. B., Sahu, P., Sreenivas, V., Nadda, N., Gamanagatti, S. R., Nayak, B., Shalimar, S., & Acharya, S. K. (2019). Prognostic role of serial alpha-fetoprotein levels in hepatocellular carcinoma treated with locoregional therapy. Scandinavian Journal of Gastroenterology, 54(9), 1132–1137.

    Article  CAS  PubMed  Google Scholar 

  24. Kelley, R. K., Meyer, T., Rimassa, L., Merle, P., Park, J. W., Yau, T., Chan, S. L., Blanc, J. F., Tam, V. C., Tran, A., & Dadduzio, V. (2020). Serum alpha-fetoprotein levels and clinical outcomes in the phase III CELESTIAL Study of cabozantinib versus placebo in patients with advanced hepatocellular carcinoma. Clinical Cancer Research, 26(18), 4795–4804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jasirwan, C. O., Fahira, A., Siregar, L., & Loho, I. (2020). The alpha fetoprotein serum is still reliable as a biomarker for the surveillance of hepatocellular carcinoma in Indonesia. BMC Gastroenterology. https://doi.org/10.1186/s12876-020-01365-1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Trevisani, F., Garuti, F., & Neri, A. (2019). Alpha-fetoprotein for diagnosis, prognosis, and transplant selection. Seminars in Liver Disease, 39(02), 163–177.

    Article  CAS  PubMed  Google Scholar 

  27. Kandasamy, A., & Pottakkat, B. (2020). Alpha-fetoprotein: A molecular bootstrap for hepatocellular carcinoma. International Journal of Molecular and Immuno Oncology, 3, 92–95.

    Article  Google Scholar 

  28. Wang, X., & Wang, Q. (2018). Alpha-fetoprotein and hepatocellular carcinoma immunity. Canadian Journal of Gastroenterol Hepatology. https://doi.org/10.1155/2018/9049252

    Article  Google Scholar 

  29. Zheng, Y., Zhu, M., & Li, M. (2020). Effects of alpha-fetoprotein on the occurrence and progression of hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 10, 2439–2446.

    Article  Google Scholar 

  30. Zhang, H., Cao, D., Zhou, L., Zhang, Y., Guo, X., Li, H., Chen, Y., Spear, B. T., Wu, J. W., Xie, Z., & Zhang, W. J. (2015). ZBTB20 is a sequence-specific transcriptional repressor of alpha-fetoprotein gene. Science and Reports, 5, 11979.

    Article  CAS  Google Scholar 

  31. Chaudhari, P., Tian, L., Deshmukh, A., & Jang, Y. Y. (2016). Expression kinetics of hepatic progenitor markers in cellular models of human liver development recapitulating hepatocyte and biliary cell fate commitment. Experimental Biology and Medicine (Maywood), 15, 1653–1662.

    Article  Google Scholar 

  32. Chen, Y., Zhao, Y., Feng, L., Zhang, J., Zhang, J., & Feng, G. (2016). Association between alpha-fetoprotein and metabolic syndrome in a Chinese asymptomatic population: A cross-sectional study. Lipids in Health and Disease, 15, 85.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lazarevich NL. (2013). AFP (alpha-fetoprotein). Retrieved January 11, 2013, from http://AtlasGeneticsOncology.org

  34. Lazarevich, N. L. (2000). Molecular mechanisms of alpha-fetoprotein gene expression. Biochemistry (Moscow), 1, 117–133.

    Google Scholar 

  35. Shen, S., Feng, H., Liu, L., Su, W., Yu, L., & Wu, J. (2020). TCP10L negatively regulates alpha-fetoprotein expression in hepatocellular carcinoma. BMB Reports, 8, 431–436.

    Article  Google Scholar 

  36. Chen, W., Peng, J., Ye, J., Dai, W., Li, G., & He, Y. (2020). Aberrant AFP expression characterizes a subset of hepatocellular carcinoma with distinct gene expression patterns and inferior prognosis. Journal of Cancer, 2, 403–413.

    Article  Google Scholar 

  37. Bois-Joyeux, B., Thomassin, H., Richard, F., Ikonomova, R., Denissenko, M., & Danan, J. L. (1995). Plusieurs facteurs de transcription participent au fonctionnement du promoteur du gene alpha-foetoproteine. Bulletin du Cancer, 82, 541–550.

    CAS  PubMed  Google Scholar 

  38. Cui, R., Nguyen, T. T., Taube, J. H., Stratton, S. A., Feuerman, M. H., & Barton, M. C. (2005). Family members p53 and p73 act together in chromatin modification and direct repression of alpha-fetoprotein transcription. Journal of Biological Chemistry, 200(47), 39152–39160.

    Article  Google Scholar 

  39. Nguyen, T. T., Cho, K., Stratton, S. A., & Barton, M. C. (2005). Transcription factor interactions and chromatin modifications associated with p53-mediated, developmental repression of the alpha-fetoprotein gene. Molecular and Cellular Biology, 6, 2147–2157.

    Article  Google Scholar 

  40. Lee, K. C., Crowe, A. J., & Barton, M. C. (1999). p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding. Molecular and Cellular Biology, 2, 1279–1288.

    Article  Google Scholar 

  41. Jin, L., Morford, L., Peterson, M., & Spear, B. (2006). Alpha-fetoprotein regulator-1 posttranscriptionally represses alpha-fetoprotein expression. The FASEB Journal, 20, A1344–A1344.

    Google Scholar 

  42. Xue, J., Cao, Z., Cheng, Y., Wang, J., Liu, Y., Yang, R., Li, H., Jiang, W., Li, G., Zhao, W., & Zhang, X. (2020). Acetylation of alpha-fetoprotein promotes hepatocellular carcinoma progression. Cancer Letters, 471, 12–26.

    Article  CAS  PubMed  Google Scholar 

  43. Mah, W. C., & Lee, C. G. D. N. A. (2014). methylation: Potential biomarker in hepatocellular carcinoma. Biomarker Research, 1, 1–3.

    Google Scholar 

  44. Zhao, T., Jia, L., Li, J., Ma, C., Wu, J., Shen, J., Dang, L., Zhu, B., Li, P., Zhi, Y., Lan, R., Xu, Y., Hao, Z., Chai, Y., Li, Q., Hu, L., & Sun, S. (2020). Heterogeneities of site-specific N-glycosylation in HCC tumors with low and high AFP concentrations. Frontiers in Oncology, 10, 496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Verhelst, X., Dias, A. M., Colombel, J. F., Vermeire, S., Van Vlierberghe, H., Callewaert, N., & Pinho, S. S. (2020). Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases. Gastroenterology, 1, 95–110.

    Article  Google Scholar 

  46. Tagliabracci, V. S., Wiley, S. E., Guo, X., Kinch, L. N., Durrant, E., Wen, J., Xiao, J., Cui, J., Nguyen, K. B., Engel, J. L., Coon, J. J., Grishin, N., Pinna, L. A., Pagliarini, D. J., & Dixon, J. E. (2015). A single kinase generates the majority of the secreted phosphoproteome. Cell, 7, 1619–1632.

    Article  Google Scholar 

  47. Mizejewski, G. J. (2019). Protein binding and interactions with alpha-fetoprotein (AFP): A review of multiple AFP cell surface receptors, intracytoplasmic binding, and inter-molecular complexing proteins. Journal of Molecular Cell Biology Forecast, 1, 1016.

    Google Scholar 

  48. Li, M., Li, H., Li, C., Wang, S., Jiang, W., Liu, Z., Zhou, S., Liu, X., McNutt, M. A., & Li, G. (2011). Alpha-fetoprotein: A new member of intracellular signal molecules in regulation of the PI3K/AKT signaling in human hepatoma cell lines. International Journal of Cancer, 3, 524–532.

    Article  Google Scholar 

  49. Shi, X., Wang, J., Lei, Y., Cong, C., Tan, D., & Zhou, X. (2019). Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Molecular Medicine Reports, 6, 4529–4535.

    Google Scholar 

  50. Yuan, T. L., & Cantley, L. C. (2008). PI3K pathway alterations in cancer: Variations on a theme. Oncogene, 41, 5497–5510.

    Article  Google Scholar 

  51. Lu, Y., Zhu, M., Li, W., Lin, B., Dong, X., Chen, Y., Xie, X., Guo, J., & Li, M. (2016). Alpha fetoprotein plays a critical role in promoting metastasis of hepatocellular carcinoma cells. Journal of Cellular and Molecular Medicine, 3, 549–558.

    Article  Google Scholar 

  52. Qiao, M., Sheng, S., & Pardee, A. B. (2008). Metastasis and AKT activation. Cell Cycle, 19, 2991–2996.

    Article  Google Scholar 

  53. Hung, C. M., Garcia-Haro, L., Sparks, C. A., & Guertin, D. A. (2012). mTOR-dependent cell survival mechanisms. Cold Spring Harbor Perspectives in Biology, 12, a008771.

    Google Scholar 

  54. Chen, J., Zhao, J., Ma, R., Lin, H., Liang, X., & Cai, X. (2014). Prognostic significance of E-cadherin expression in hepatocellular carcinoma: A meta-analysis. PLoS ONE, 8, e103952.

    Article  Google Scholar 

  55. Scheau, C., Badarau, I. A., Costache, R., Caruntu, C., Mihai, G. L., Didilescu, A. C., Constantin, C., & Neagu, M. (2019). The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Analytical Cellular Pathology (Amsterdam), 2019, 9423907.

    PubMed  Google Scholar 

  56. Huang, F., & Geng, X. P. (2010). Chemokines and hepatocellular carcinoma. World Journal of Gastroenterology, 15, 1832–1836.

    Article  Google Scholar 

  57. Dohi, T., & Burkly, L. C. (2012). The TWEAK/Fn14 pathway as an aggravating and perpetuating factor in inflammatory diseases: Focus on inflammatory bowel diseases. Journal of Leukocyte Biology, 2, 265–279.

    Article  Google Scholar 

  58. Feng, S. L., Guo, Y., Factor, V. M., Thorgeirsson, S. S., Bell, D. W., Testa, J. R., Peifley, K. A., & Winkles, J. A. (2000). The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas. American Journal of Pathology, 4, 1253–1261.

    Article  Google Scholar 

  59. Li, M., Li, H., Li, C., Guo, L., Liu, H., Zhou, S., Liu, X., Chen, Z., Shi, S., Wei, J., McNutt, M. A., & Li, G. (2009). Cytoplasmic alpha-fetoprotein functions as a co-repressor in RA-RAR signaling to promote the growth of human hepatoma Bel 7402 cells. Cancer Letters, 2, 190–199.

    Article  Google Scholar 

  60. Aronin, A., Amsili, S., Prigozhina, T. B., Tzdaka, K., Rachmilewitz, J., Shani, N., Tykocinski, M. L., & Dranitzki, E. M. (2013). Fn14•TRAIL effectively inhibits hepatocellular carcinoma growth. PLoS ONE, 10, e77050.

    Article  Google Scholar 

  61. Hu, G., Zeng, W., & Xia, Y. (2017). TWEAK/Fn14 signaling in tumors. Tumour Biology, 6, 1010428317714624.

    Google Scholar 

  62. Wang, S., Jiang, W., Chen, X., Zhang, C., Li, H., Hou, W., Liu, Z., McNutt, M. A., Lu, F., & Li, G. (2012). Alpha-fetoprotein acts as a novel signal molecule and mediates transcription of Fn14 in human hepatocellular carcinoma. Journal of Hepatology, 2, 322–329.

    Article  Google Scholar 

  63. Li, M. S., Li, P. F., He, S. P., Du, G. G., & Li, G. (2002). The promoting molecular mechanism of alpha-fetoprotein on the growth of human hepatoma Bel7402 cell line. World Journal of Gastroenterology, 3, 469–475.

    Article  Google Scholar 

  64. Tunissiolli, N. M., Castanhole-Nunes, M. M. U., Biselli-Chicote, P. M., Pavarino, E. C., da Silva, R. F., da Silva, R. C., & Goloni-Bertollo, E. M. (2017). Hepatocellular carcinoma: A comprehensive review of biomarkers, clinical aspects, and therapy. Asian Pacific Journal of Cancer Prevention, 4, 863–872.

    Google Scholar 

  65. Li, M. S., Ma, Q. L., Chen, Q., Liu, X. H., Li, P. F., Du, G. G., & Li, G. (2005). Alpha-fetoprotein triggers hepatoma cells escaping from immune surveillance through altering the expression of Fas/FasL and tumor necrosis factor related apoptosis-inducing ligand and its receptor of lymphocytes and liver cancer cells. World Journal of Gastroenterology, 17, 2564–2569.

    Article  Google Scholar 

  66. Yamamoto, M., Tatsumi, T., Miyagi, T., Tsunematsu, H., Aketa, H., Hosui, A., Kanto, T., Hiramatsu, N., Hayashi, N., & Takehara, T. (2011). α-Fetoprotein impairs activation of natural killer cells by inhibiting the function of dendritic cells. Clinical and Experimental Immunology, 2, 211–219.

    Article  Google Scholar 

  67. Gao, Q., Qiu, S. J., Fan, J., Zhou, J., Wang, X. Y., Xiao, Y. S., Xu, Y., Li, Y. W., & Tang, Z. Y. (2007). Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. Journal of Clinical Oncology, 18, 2586–2593.

    Article  Google Scholar 

  68. Zhu, M., & Li, M. (2020). Inhibition of autophagy and immune response: Alpha-fetoprotein stimulates initiation of liver cancer. J Cancer Immunol, 3, 69–73.

    Google Scholar 

  69. Li, H., Liu, Y., Jiang, W., Xue, J., Cheng, Y., Wang, J., Yang, R., & Zhang, X. (2021). Icaritin promotes apoptosis and inhibits proliferation by down-regulating AFP gene expression in hepatocellular carcinoma. BMC Cancer, 1, 318.

    Article  Google Scholar 

  70. Collins, M., Ling, V., & Carreno, B. M. (2005). The B7 family of immune-regulatory ligands. Genome Biology, 6, 223.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stansfield, W. E., Ranek, M., Pendse, A., Schisler, J. C., Wang, S., Pulinilkunnil, T., & Willis, M. S. (2014). The pathophysiology of cardiac hypertrophy and heart failure. Cellular and Molecular Pathobiology of Cardiovascular Disease. https://doi.org/10.1016/B978-0-12-405206-2.00004-1

    Article  Google Scholar 

  72. Cha, M. Y., Kim, C. M., Park, Y. M., & Ryu, W. S. (2004). Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology, 6, 1683–1693.

    Article  Google Scholar 

  73. Kline, C. L., Jackson, R., Engelman, R., Pledger, W. J., Yeatman, T. J., & Irby, R. B. (2008). Src kinase induces tumor formation in the c-SRC C57BL/6 mouse. International Journal of Cancer, 12, 2665–2673.

    Article  Google Scholar 

  74. Hobert, O., & Westphal, H. (2000). Functions of LIM-homeobox genes. Trends in Genetics, 2, 75–83.

    Article  Google Scholar 

  75. Dudich, E., Semenkova, L., Dudich, I., Gorbatova, E., Tochtamisheva, N., Tatulov, E., Nikolaeva, M., & Sukhikh, G. (1999). alpha-fetoprotein causes apoptosis in tumor cells via a pathway independent of CD95, TNFR1 and TNFR2 through activation of caspase-3-like proteases. European Journal of Biochemistry, 3, 750–761.

    Article  Google Scholar 

  76. Chen, T., Dai, X., Dai, J., Ding, C., Zhang, Z., Lin, Z., Hu, J., Lu, M., Wang, Z., Qi, Y., Zhang, L., Pan, R., Zhao, Z., Lu, L., Liao, W., & Lu, X. (2020). AFP promotes HCC progression by suppressing the HuR-mediated Fas/FADD apoptotic pathway. Cell Death & Disease, 10, 822.

    Article  Google Scholar 

  77. Li, M., Liu, X., Zhou, S., Li, P., & Li, G. (2005). Effects of alpha fetoprotein on escape of Bel 7402 cells from attack of lymphocytes. BMC Cancer, 5, 96.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We acknowledge the support of the Amrita Vishwa Vidyapeetham SEED grant [Project ID: K-PHAR-22-662] to LRN.

Author information

Authors and Affiliations

Authors

Contributions

LRN & VV designed and conceptualized the review, writing and revising, and proofreading of the manuscript. SS & AH wrote the first draft. BLN, ARK, BSM, and AV conducted a literature survey and data collection. BLN carried out the artwork.

Corresponding authors

Correspondence to Vinod Vijayakurup or Lekshmi R. Nath.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samban, S.S., Hari, A., Nair, B. et al. An Insight Into the Role of Alpha-Fetoprotein (AFP) in the Development and Progression of Hepatocellular Carcinoma. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00890-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00890-0

Keywords

Navigation