Skip to main content

Advertisement

Log in

Composition and Diversity of Endophytic Rhizosphere Microbiota in Apple Tree with Different Ages

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In order to determine the underlying mechanism of the senescence occurring in older apple trees, the effects of tree age on the community structure and dominant genus of endophytic rhizosphere bacteria in apple were investigated. The diversity and structure of the bacterial communities and corresponding changes in the dominant genera of endophytic rhizosphere bacteria of apple at different ages (2, 8, 16, 22 years) were compared based on 16S rRNA high-throughput sequencing technology. The results revealed that the longer the tree age, the less the number of ASV in the endophytic bacteria. Moreover, the number of ASV in the endophytic bacteria gradually decreased as the tree age increased, however no significant changes were observed in the alpha diversity. At the phyla level, the relative abundance of Actinobacteria increased, while that of Proteobateria decreased. At the genus level, the relative abundance of Mycobacterium, Chujaibacter, and other genera increased, while the relative abundance of Aquabacterium, Ralstonia, Streptomyces, Asticcacaulis, Hyphomicrobium, Pseudomonas, and Sphingomonas decreased. The reduced relative abundance of endophytic rhizosphere bacteria associated with plant growth and disease resistance may thus be the cause of tree senescence. This work acts as a reference to increases the understanding of plant–microbe interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., et al. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America., 112(8), E911–E920. https://doi.org/10.1073/pnas.1414592112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berendsen, R. L., Pieterse, C. M., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science., 17(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  3. Berlec, A. (2012). ovel techniques and findings in the study of plant microbiota: Search for plant probiotics. Plant Science., 193–194, 96–102. https://doi.org/10.1016/j.plantsci.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  4. Schlaeppi, K., & Bulgarelli, D. (2015). The plant microbiome at work. Molecular Plant-Microbe Interactions., 28, 212–217. https://doi.org/10.1094/MPMI-10-14-0334-FI

    Article  CAS  PubMed  Google Scholar 

  5. Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters, 278(1), 1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

    Article  CAS  PubMed  Google Scholar 

  6. Bian, X., Xiao, S., Zhao, Y., Xu, Y., Yang, H., & Zhang, L. (2020). Comparative analysis of rhizosphere soil physiochemical characteristics and microbial communities between rusty and healthy ginseng root. Scientific Reports, 10(1), 15756. https://doi.org/10.1038/s41598-020-71024-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garbeva, P., Hordijk, C., Gerards, S., & de Boer, W. (2014). Volatile-mediated interactions between phylogenetically different soil bacteria. Frontiers in Microbiology, 5(289), 289. https://doi.org/10.3389/fmicb.2014.00289

    Article  PubMed  PubMed Central  Google Scholar 

  8. De Oliveira, A. J., Franco, T. C., Florentino, L. A., & Correa Landgraf, P. R. (2020). Characterization of associative diazotrophic bacteria in torch ginger. The Journal SeminaCienciasAgrarias, 41(6), 2815–2823. https://doi.org/10.5433/1679-0359.2020v41n6p2815

    Article  CAS  Google Scholar 

  9. Geries, L. S. M., & Elsadany, A. Y. (2021). Maximizing growth and productivity of onion (Allium cepa L.) by Spirulina platensis extract and nitrogen-fixing endophyte Pseudomonas stutzeri. Archives of Microbiology, 203(1), 169–181. https://doi.org/10.1007/s00203-020-01991-z

    Article  CAS  PubMed  Google Scholar 

  10. Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221(2019), 36–49. https://doi.org/10.1016/j.micres.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  11. Marchesi, J. R., & Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome, 3, 31. https://doi.org/10.1186/s40168-015-0094-5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Benitez, M. S., Osborne, S. L., & Lehman, R. M. (2017). Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome. Scientific Reports, 7(1), 15709. https://doi.org/10.1038/s41598-017-15955-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, L., Naylor, D., Dong, Z., Simmons, T., Pierroz, G., Hixson, K. K., et al. (2018). Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences, 115(18), E4284–E4293. https://doi.org/10.1073/pnas.1717308115

    Article  CAS  Google Scholar 

  14. Cordero, J., de Freitas, J. R., & Germida, J. J. (2020). Bacterial microbiome associated with the rhizosphere and root interior of crops in Saskatchewan, Canada. Canadian Journal of Microbiology., 66(1), 71–85. https://doi.org/10.1139/cjm-2019-0330

    Article  CAS  PubMed  Google Scholar 

  15. Pang, Z., Xu, P., & Yu, D. (2020). Environmental adaptation of the root microbiome in two rice ecotypes. Microbiological Research, 241, 126588. https://doi.org/10.1016/j.micres.2020.126588

    Article  CAS  PubMed  Google Scholar 

  16. Liu, J., Ridgway, H. J., & Jones, E. E. (2020). Apple endophyte community is shaped by tissue type, cultivar and site and has members with biocontrol potential against Neonectriaditissima. Journal of Applied Microbiology., 128(6), 1735–1753. https://doi.org/10.1111/jam.14587

    Article  CAS  PubMed  Google Scholar 

  17. Grinbergs, D., Chilian, J., Padilla, N., Reyes, M., France, A., Moya-Elizondo, E., & Gerding, M. (2021). Endophytic microorganisms associated with reversion of silverleaf disease symptoms in apple. Phytopathology, 111(9), 1541–1550. https://doi.org/10.1094/PHYTO-12-20-0548-R

    Article  CAS  PubMed  Google Scholar 

  18. Rho, H., Van Epps, V., Kim, S. H., & Doty, S. L. (2020). Endophytes increased fruit quality with higher soluble sugar production in honeycrisp apple (Malus pumila). Microorganisms., 8(5), 699. https://doi.org/10.3390/microorganisms8050699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berdeni, D., Cotton, T. E. A., Daniell, T. J., Bidartondo, M. I., Cameron, D. D., & Evans, K. L. (2018). The effects of arbuscular mycorrhizal fungal colonisation on nutrient status, growth, productivity, and canker resistance of apple (Malus pumila). Frontiers in Cellular and Infection Microbiology., 3(9), 1461. https://doi.org/10.3389/fmicb.2018.01461

    Article  Google Scholar 

  20. Wang, Q., Sun, H., Li, M., Xu, C., & Zhang, Y. (2020). Different age-induced changes in rhizosphere microbial composition and function of Panax ginseng in transplantation mode. Frontiers in Plant Science, 11, 563240. https://doi.org/10.3389/fpls.2020.563240

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Callahan, B. J., Mcmurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). Dada2: High-resolution sample inference from Illumina amplicon data. Nature Methods., 13(7), 581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Gloeckner, F. O. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590-596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vandenkoornhuyse, P., Quaiser, A., de Duhamel, M., Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196–1206. https://doi.org/10.1111/nph.13312

    Article  PubMed  Google Scholar 

  25. Andreolli, M., Lampis, S., Zapparoli, G., Angelini, E., & Vallini, G. (2016). Diversity of bacterial endophytes in 3 and15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiological Research., 183, 42–52. https://doi.org/10.1016/j.micres.2015.11.009

    Article  PubMed  Google Scholar 

  26. Miguel, P. S., de Oliveira, M. N., Delvaux, J. C., de Jsus, G. L., Borges, A. C., Tótola, M. R., Neves, J. C., & Costa, M. D. (2016). Diversity and distribution of the endophytic bacterial community at different stages of eucalyptus growth. Antonie Van Leeuwenhoek, 109(6), 755–771. https://doi.org/10.1007/s10482-016-0676-7

    Article  CAS  PubMed  Google Scholar 

  27. Distelbarth, H., Kull, U., & Jeremias, K. (1984). Seasonal trends in energy contents of storage substances in evergreen gymnosperms growing under mild climatic conditions in Central Europe. Flora, 109(6), 755–771. https://doi.org/10.18419/opus-2238

    Article  Google Scholar 

  28. Li, C., Li, X., Kong, W., Wu, Y., & Wang, J. (2010). Effect of monoculture soybean on soil microbial community in the Northeast China. Plant and Soil, 330, 423–433. https://doi.org/10.1007/s11104-009-0216-6

    Article  CAS  Google Scholar 

  29. Bulgari, D., Bozkurt, A. I., Casati, P., Cağlayan, K., Quaglino, F., & Bianco, P. A. (2012). Endophytic bacterial community living in roots of healthy and ’Candidatus Phytoplasma mali’-infected apple (Malus domestica, Borkh.) trees. Antonie Van Leeuwenhoek, 102(4), 677–87. https://doi.org/10.1007/s10482-012-9766-3

    Article  PubMed  Google Scholar 

  30. Liu, Y., Wang, R., Li, Y., Cao, Y., Chen, C., Qiu, C., et al. (2017). High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of “Beijing” hybrid maize planted in China. Plant Growth Regulation, 81, 317–324. https://doi.org/10.1007/s10725-016-0208-5

    Article  CAS  Google Scholar 

  31. Wang, Y., Xu, X., Liu, T., Wang, H., Yang, Y., Chen, X., & Zhu, S. (2020). Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea L. Gaud) fields in different areas in China. Scientific Reports, 10(1), 3264. https://doi.org/10.1038/s41598-020-58608-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanokratana, P., Uengwetwanit, T., Rattanachomsri, U., Bunterngsook, B., Nimchua, T., Tangphatsornruang, S., et al. (2011). Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microbial Ecology., 61(3), 518–528. https://doi.org/10.1007/s00248-010-9766-7

    Article  PubMed  Google Scholar 

  33. Chen, S., Dai, J., Song, X., Jiang, X., & Han, B. (2019). Endophytic microbiota comparison of dendrobium huoshanense root and stem in different growth years. Planta Medica, 86(13–14), 967–975. https://doi.org/10.1055/a-1046-1022

    Article  CAS  PubMed  Google Scholar 

  34. Scott, M., Rani, M., Samsatly, J., Charron, J.-B., & Jabaji, S. (2018). Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles, and seeds. Canadian Journal of Chemistry, 64(10), 664–680. https://doi.org/10.1139/cjm-2018-0108

    Article  CAS  Google Scholar 

  35. Brenda, R.-P., Reza-Vázquez, D. M., Gutiérrez-Paredes, S., et al. (2017). Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on Brassica nigra seed germination. Pedosphere, 27(3), 511–526. https://doi.org/10.1016/s1002-0160(17)60347-3

    Article  Google Scholar 

  36. Takeuchi, M., Sakane, T., Yanagi, M., Yamasato, K., Hamana, K., & Yokota, A. (1995). Taxonomic study of bacteria isolated from plants: proposal of Sphingomonasrosasp.nov., Sphingomonaspruni sp. nov., Sphingomonasasaccharolytica sp. nov, and Sphingomonasmali sp. nov.International Journal of Systematic and Evolutionary Microbiology.45(2): 334–341. Doi: https://doi.org/10.1099/00207713-45-2-334

  37. Jiang, W., Gao, Q., Zhang, L., Liu, Y., Zhang, M., Ke, Z., Zhou, Y., & Hong, Q. (2021). Detoxification esterase StrH initiates strobilurin fungicide degradation in Hyphomicrobium sp. strain DY-1. Applied Environmental Microbiology, 87(11), 103–21. https://doi.org/10.1128/AEM.00103-21

    Article  Google Scholar 

  38. Lünsmann, V., Kappelmeyer, U., Benndorf, R., Martinez-Lavanchy, P. M., Taubert, A., Adrian, L., & Jehmlich, N. (2016). In situ protein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model. EnvironMicrobiol, 18(4), 1176–1186. https://doi.org/10.1111/1462-2920.13133

    Article  CAS  Google Scholar 

  39. Kim, S. J., Ahn, J. H., Weon, H. Y., Hong, S. B., Seok, S. J., Kim, J. S., & Kwon, S. W. (2015). Chujaibacter soli gen nov., sp. nov., isolated from soil. Journal of General and Applied Microbiology, 53(9), 592–597. https://doi.org/10.1007/s12275-015-5136-y

    Article  CAS  Google Scholar 

  40. Senevirathna, S. T. M. L. D., Krishna, K. C. B., Mahinroosta, R., & Sathasivan, A. (2022). Comparative characterization of microbial communities that inhabit PFAS-rich contaminated sites: A case-control study. Journal of Hazardous Materials., 423(Pt A), 126941. https://doi.org/10.1016/j.jhazmat.2021.126941

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Hebei Natural Science Foundation (C2021204106; C2022204086), Hebei Province Agricultural Industry System Project (HBCT2023100204, HBCT2021100211), Supported by the earmarked fund for CARS-13, S&T Program of Hebei (20326812D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Zhao or Xiujun Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jiyuan Pan and Haibin Wen contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Dong, Q., Wen, H. et al. Composition and Diversity of Endophytic Rhizosphere Microbiota in Apple Tree with Different Ages. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00794-z

Keywords

Navigation