Skip to main content

Advertisement

Log in

Design Principles of a Novel Construct for HBB Gene-Editing and Investigation of Its Gene-Targeting Efficiency in HEK293 Cells

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Beta-thalassemia is one of the most common monogenic inherited disorders worldwide caused by different mutations in the hemoglobin subunit beta (HBB) gene. Genome-editing based on clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system (CRISPR/Cas9) has raised the hope for life-long gene therapy of beta-thalassemia. In a proof-of-concept study, we describe the detailed design and assess the efficacy of a novel homology-directed repair (HDR)-based CRISPR construct for targeting the HBB locus. The selected sgRNAs were designed and cloned into an optimized CRISPR plasmid. The HDR donor templates containing a reporter and a selection marker flanked by the piggyBac Inverted Tandem Repeat (ITRs), the homology arms and the delta thymidine kinase (ΔTK) gene for negative selection were constructed. The efficiency of on-target mutagenesis by the eSpCas9/sgRNAs was assessed by mismatch assays. HDR-positive cells were isolated by treatment with G418 or selection based on truncated Neuron Growth Factor Receptor (tNGFR) expression using the Magnetic Activated Cell Sorting (MACS) method followed by ganciclovir (GCV) treatment to eliminate cells with random genomic integration of the HDR donor template. In–out PCR and sanger sequencing confirmed HDR in the isolated cells. Our data showed ~ 50% efficiency for co-transfection of CRISPR/donor template plasmids in HEK293 cells and following G418 treatment, the HDR efficiency was detected at ~ 37.5%. Moreover, using a clinically-relevant strategy, HDR events were validated after selection for tNGFR+ cells followed by negative selection for ΔTK by GCV treatment. Thus, our HDR-based gene-editing strategy could efficiently target the HBB locus and enrich for HDR-positive cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Jaing, T.-H., Chang, T.-Y., Chen, S.-H., Lin, C.-W., Wen, Y.-C., & Chiu, C.-C. (2021). Molecular genetics of β-thalassemia: A narrative review. Medicine, 100(45), e27522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rattananon, P., Anurathapan, U., Bhukhai, K., & Hongeng, S. (2021). The future of gene therapy for transfusion-dependent beta-thalassemia: The power of the lentiviral vector for genetically modified hematopoietic stem cells. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2021.730873

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cosenza, L. C., Gasparello, J., Romanini, N., Zurlo, M., Zuccato, C., Gambari, R., & Finotti, A. (2021). Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β039-thalassemia patients. Molecular Therapy-Methods & Clinical Development, 21, 507–523.

    Article  CAS  Google Scholar 

  4. Hossain, M. S., Raheem, E., Sultana, T. A., Ferdous, S., Nahar, N., Islam, S., Arifuzzaman, M., Razzaque, M. A., Alam, R., & Aziz, S. (2017). Thalassemias in South Asia: Clinical lessons learnt from Bangladesh. Orphanet Journal of Rare Diseases, 12(1), 1–9.

    Article  Google Scholar 

  5. Rezabeigi Davarani, E., Mohseni Takaloo, F., Vahidnia, A., Daneshi, S., Rezabeigi Davarani, M., Khanjani, N., Hushmandi, K., & Raei, M. (2020). Epidemiological investigation of a twenty-year major β-thalassemia surveillance in Kerman, Iran. Archives of Hygiene Sciences, 9(4), 265–274.

    Article  Google Scholar 

  6. Guha, T. K., Wai, A., & Hausner, G. (2017). Programmable genome editing tools and their regulation for efficient genome engineering. Computational and Structural Biotechnology Journal, 15, 146–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carroll, D. (2014). Genome engineering with targetable nucleases. Annual Review of Biochemistry, 83, 409–439.

    Article  CAS  PubMed  Google Scholar 

  8. Tafazoli, A., Behjati, F., Farhud, D. D., & Abbaszadegan, M. R. (2019). Combination of genetics and nanotechnology for down syndrome modification: A potential hypothesis and review of the literature. Iranian Journal of Public Health, 48(3), 371.

    PubMed  PubMed Central  Google Scholar 

  9. Gaj, T., Gersbach, C. A., & Barbas, C. F., III. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bazi, A., & Miri-Moghaddam, E. (2016). Spectrum of β-thalassemia mutations in Iran, an update. Iranian Journal of Pediatric Hematology & Oncology, 6(3), 190–202.

    Google Scholar 

  12. Saha, D., Patgaonkar, M., Shroff, A., Ayyar, K., Bashir, T., & Reddy, K. (2014). Hemoglobin expression in nonerythroid cells: Novel or ubiquitous? International Journal of Inflammation, 2014, 1–8.

    Article  Google Scholar 

  13. Dever, D. P., Bak, R. O., Reinisch, A., Camarena, J., Washington, G., Nicolas, C. E., Pavel-Dinu, M., Saxena, N., Wilkens, A. B., & Mantri, S. (2016). CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 539(7629), 384–389.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  14. Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y.-S., Domm, J., Eustace, B. K., Foell, J., de la Fuente, J., Grupp, S., & Handgretinger, R. (2021). CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. New England Journal of Medicine, 384(3), 252–260.

    Article  CAS  PubMed  Google Scholar 

  15. Firth, A. L., Menon, T., Parker, G. S., Qualls, S. J., Lewis, B. M., Ke, E., Dargitz, C. T., Wright, R., Khanna, A., & Gage, F. H. (2015). Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Reports, 12(9), 1385–1390.

    Article  CAS  PubMed  Google Scholar 

  16. Schwank, G., Koo, B.-K., Sasselli, V., Dekkers, J. F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., & van der Ent, C. K. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13(6), 653–658.

    Article  CAS  PubMed  Google Scholar 

  17. Li, H. L., Fujimoto, N., Sasakawa, N., Shirai, S., Ohkame, T., Sakuma, T., Tanaka, M., Amano, N., Watanabe, A., & Sakurai, H. (2015). Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports, 4(1), 143–154.

    Article  CAS  PubMed  Google Scholar 

  18. Ousterout, D. G., Kabadi, A. M., Thakore, P. I., Majoros, W. H., Reddy, T. E., & Gersbach, C. A. (2015). Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nature Communications, 6(1), 1–13.

    Article  Google Scholar 

  19. Monteys, A. M., Ebanks, S. A., Keiser, M. S., & Davidson, B. L. (2017). CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Molecular Therapy, 25(1), 12–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shin, J. W., Kim, K.-H., Chao, M. J., Atwal, R. S., Gillis, T., MacDonald, M. E., Gusella, J. F., & Lee, J.-M. (2016). Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Human Molecular Genetics, 25(20), 4566–4576.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. De Ravin, S. S., Li, L., Wu, X., Choi, U., Allen, C., Koontz, S., Lee, J., Theobald-Whiting, N., Chu, J., & Garofalo, M. (2017). CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Science Translational Medicine, 9(372), eaah3480.

    Article  PubMed  Google Scholar 

  22. Flynn, R., Grundmann, A., Renz, P., Hänseler, W., James, W. S., Cowley, S. A., & Moore, M. D. (2015). CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Experimental Hematology, 43(10), 838–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guan, Y., Ma, Y., Li, Q., Sun, Z., Ma, L., Wu, L., Wang, L., Zeng, L., Shao, Y., & Chen, Y. (2016). CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Molecular Medicine, 8(5), 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park, C.-Y., Kim, D. H., Son, J. S., Sung, J. J., Lee, J., Bae, S., Kim, J.-H., Kim, D.-W., & Kim, J.-S. (2015). Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell, 17(2), 213–220.

    Article  CAS  PubMed  Google Scholar 

  25. Chung, J. E., Magis, W., Vu, J., Heo, S.-J., Wartiovaara, K., Walters, M. C., Kurita, R., Nakamura, Y., Boffelli, D., & Martin, D. I. (2019). CRISPR-Cas9 interrogation of a putative fetal globin repressor in human erythroid cells. PLoS ONE, 14(1), e0208237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khosravi, M. A., Abbasalipour, M., Concordet, J.-P., Vom Berg, J., Zeinali, S., Arashkia, A., Azadmanesh, K., Buch, T., & Karimipoor, M. (2019). Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. European Journal of Pharmacology, 854, 398–405.

    Article  CAS  PubMed  Google Scholar 

  27. Martyn, G. E., Wienert, B., Yang, L., Shah, M., Norton, L. J., Burdach, J., Kurita, R., Nakamura, Y., Pearson, R., & Funnell, A. P. (2018). Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nature Genetics, 50(4), 498–503.

    Article  CAS  PubMed  Google Scholar 

  28. Métais, J.-Y., Doerfler, P. A., Mayuranathan, T., Bauer, D. E., Fowler, S. C., Hsieh, M. M., Katta, V., Keriwala, S., Lazzarotto, C. R., & Luk, K. (2019). Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Advances, 3(21), 3379–3392.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Niu, X., He, W., Song, B., Ou, Z., Fan, D., Chen, Y., Fan, Y., & Sun, X. (2016). Combining single strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in β-thalassemia-induced pluripotent stem cells. Journal of Biological Chemistry, 291(32), 16576–16585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patsali, P., Mussolino, C., Ladas, P., Floga, A., Kolnagou, A., Christou, S., Sitarou, M., Antoniou, M. N., Cathomen, T., & Lederer, C. W. (2019). The scope for thalassemia gene therapy by disruption of aberrant regulatory elements. Journal of Clinical Medicine, 8(11), 1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patsali, P., Turchiano, G., Papasavva, P., Romito, M., Loucari, C. C., Stephanou, C., Christou, S., Sitarou, M., Mussolino, C., & Cornu, T. I. (2019). Correction of IVS I–110 (G> A) β-thalassemia by CRISPR/Cas-and TALEN-mediated disruption of aberrant regulatory elements in human hematopoietic stem and progenitor cells. Haematologica, 104(11), e497.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shariati, L., Rohani, F., Heidari Hafshejani, N., Kouhpayeh, S., Boshtam, M., Mirian, M., Rahimmanesh, I., Hejazi, Z., Modarres, M., & Pieper, I. L. (2018). Disruption of SOX6 gene using CRISPR/Cas9 technology for gamma-globin reactivation: An approach towards gene therapy of β-thalassemia. Journal of Cellular Biochemistry, 119(11), 9357–9363.

    Article  CAS  PubMed  Google Scholar 

  33. Weber, L., Frati, G., Felix, T., Hardouin, G., Casini, A., Wollenschlaeger, C., Meneghini, V., Masson, C., De Cian, A., & Chalumeau, A. (2020). Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Science Advances, 6(7), eaay9392.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  34. Wu, Y., Zeng, J., Roscoe, B. P., Liu, P., Yao, Q., Lazzarotto, C. R., Clement, K., Cole, M. A., Luk, K., & Baricordi, C. (2019). Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nature Medicine, 25(5), 776–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiong, Z., Xie, Y., Yang, Y., Xue, Y., Wang, D., Lin, S., Chen, D., Lu, D., He, L., & Song, B. (2019). Efficient gene correction of an aberrant splice site in β-thalassaemia iPSCs by CRISPR/Cas9 and single-strand oligodeoxynucleotides. Journal of Cellular and Molecular Medicine, 23(12), 8046–8057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, P., Tong, Y., Liu, X.-Z., Wang, T.-T., Cheng, L., Wang, B.-Y., Lv, X., Huang, Y., & Liu, D.-P. (2015). Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C > T) mutation in β-thalassemia-derived iPSCs. Scientific Reports, 5(1), 1–12.

    Google Scholar 

  37. Hirakawa, M. P., Krishnakumar, R., Timlin, J. A., Carney, J. P., & Butler, K. S. (2020). Gene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports. https://doi.org/10.1042/BSR20200127

  38. Ming, S., Tian-Rui, X., & Ce-Shi, C. (2016). The big bang of genome editing technology: Development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 37(4), 191.

    Google Scholar 

  39. Ceasar, S. A., Rajan, V., Prykhozhij, S. V., Berman, J. N., & Ignacimuthu, S. (2016). Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(9), 2333–2344.

    Article  CAS  PubMed  Google Scholar 

  40. El-Kenawy, A., Benarba, B., Neves, A. F., de Araujo, T. G., Tan, B. L., & Gouri, A. (2019). Gene surgery: Potential applications for human diseases. EXCLI Journal, 18, 908.

    PubMed  PubMed Central  Google Scholar 

  41. Papasavva, P., Kleanthous, M., & Lederer, C. W. (2019). Rare opportunities: CRISPR/Cas-based therapy development for rare genetic diseases. Molecular Diagnosis & Therapy, 23(2), 201–222.

    Article  CAS  Google Scholar 

  42. Antony, J. S., Latifi, N., Haque, A., Lamsfus-Calle, A., Daniel-Moreno, A., Graeter, S., Baskaran, P., Weinmann, P., Mezger, M., & Handgretinger, R. (2018). Gene correction of HBB mutations in CD34+ hematopoietic stem cells using Cas9 mRNA and ssODN donors. Molecular and Cellular Pediatrics, 5(1), 1–7.

    Article  Google Scholar 

  43. Cai, L., Bai, H., Mahairaki, V., Gao, Y., He, C., Wen, Y., Jin, Y.-C., Wang, Y., Pan, R. L., & Qasba, A. (2018). A universal approach to correct various HBB gene mutations in human stem cells for gene therapy of beta-thalassemia and sickle cell disease. Stem Cells Translational Medicine, 7(1), 87–97.

    Article  CAS  PubMed  Google Scholar 

  44. Liang, P., Xu, Y., Zhang, X., Ding, C., Huang, R., Zhang, Z., Lv, J., Xie, X., Chen, Y., & Li, Y. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell, 6(5), 363–372.

    Article  CAS  Google Scholar 

  45. Xie, F., Ye, L., Chang, J. C., Beyer, A. I., Wang, J., Muench, M. O., & Kan, Y. W. (2014). Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Research, 24(9), 1526–1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, H., Ren, S., Yu, S., Pan, H., Li, T., Ge, S., Zhang, J., & Xia, N. (2020). Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. International Journal of Molecular Sciences, 21(18), 6461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Song, F., & Stieger, K. (2017). Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Molecular Therapy-Nucleic Acids, 7, 53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., & Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dickinson, D. J., Ward, J. D., Reiner, D. J., & Goldstein, B. (2013). Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nature Methods, 10(10), 1028–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Azhagiri, M. K. K., Babu, P., Venkatesan, V., & Thangavel, S. (2021). Homology-directed gene-editing approaches for hematopoietic stem and progenitor cell gene therapy. Stem Cell Research & Therapy, 12(1), 1–12.

    Article  Google Scholar 

  51. Kim, H., Kim, M.-S., Wee, G., Lee, C.-I., Kim, H., & Kim, J.-S. (2013). Magnetic separation and antibiotics selection enable enrichment of cells with ZFN/TALEN-induced mutations. PLoS ONE, 8(2), e56476.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  52. Mitzelfelt, K. A., McDermott-Roe, C., Grzybowski, M. N., Marquez, M., Kuo, C.-T., Riedel, M., Lai, S., Choi, M. J., Kolander, K. D., & Helbling, D. (2017). Efficient precision genome editing in iPSCs via genetic co-targeting with selection. Stem Cell Reports, 8(3), 491–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Quintana-Bustamante, O., Fañanas-Baquero, S., Orman, I., Torres, R., Duchateau, P., Poirot, L., Gouble, A., Bueren, J. A., & Segovia, J. C. (2019). Gene editing of PKLR gene in human hematopoietic progenitors through 5′ and 3′ UTR modified TALEN mRNA. PLoS ONE, 14(10), e0223775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Supharattanasitthi, W., Carlsson, E., Sharif, U., & Paraoan, L. (2019). CRISPR/Cas9-mediated one step bi-allelic change of genomic DNA in iPSCs and human RPE cells in vitro with dual antibiotic selection. Scientific Reports, 9(1), 1–7.

    Article  CAS  ADS  Google Scholar 

  55. Bonini, C., Grez, M., Traversari, C., Ciceri, F., Marktel, S., Ferrari, G., Dinauer, M., Sadat, M., Aiuti, A., & Deola, S. (2003). Safety of retroviral gene marking with a truncated NGF receptor. Nature Medicine, 9(4), 367–369.

    Article  CAS  PubMed  Google Scholar 

  56. Ciceri, F., Bonini, C., Stanghellini, M. T. L., Bondanza, A., Traversari, C., Salomoni, M., Turchetto, L., Colombi, S., Bernardi, M., & Peccatori, J. (2009). Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): A non-randomised phase I-II study. The Lancet Oncology, 10(5), 489–500.

    Article  PubMed  Google Scholar 

  57. Oliveira, G., Ruggiero, E., Stanghellini, M. T. L., Cieri, N., D’Agostino, M., Fronza, R., Lulay, C., Dionisio, F., Mastaglio, S., & Greco, R. (2015). Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory. Science Translational Medicine, 7(317), 317ra198-317ra198.

    Article  PubMed  Google Scholar 

  58. Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., & Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science, 351(6268), 84–88.

    Article  CAS  ADS  PubMed  Google Scholar 

  59. Osborn, M. J., Belanto, J. J., Tolar, J., & Voytas, D. F. (2016). Gene editing and its application for hematological diseases. International Journal of Hematology, 104(1), 18–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Institute for Medical Research Development (NIMAD) Grant (Application Number: 973542).

Author information

Authors and Affiliations

Authors

Contributions

ML and AA contributed equally to this work and performed most of the experiments and wrote the manuscript with the help from other authors. MM contributed to the project design. SM-J and MRA designed and supervised the project and contributed to the interpretation of the results and manuscript writing. MRA provided the funding for the project from his grant.

Corresponding authors

Correspondence to Sina Mozaffari-Jovin or Mohammad Reza Abbaszadegan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, M., Ashouri, A., Mojarrad, M. et al. Design Principles of a Novel Construct for HBB Gene-Editing and Investigation of Its Gene-Targeting Efficiency in HEK293 Cells. Mol Biotechnol 66, 517–530 (2024). https://doi.org/10.1007/s12033-023-00739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00739-6

Keywords

Navigation