Skip to main content
Log in

Improving Catalytic Activity, Acid-Tolerance, and Thermal Stability of Glutathione Peroxidase by Systematic Site-Directed Selenocysteine Incorporation

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Glutathione peroxidase (GPx) is an important antioxidant enzyme. Selenocysteine (Sec)-containing GPxs (Sec-GPxs) are usually superior to their conventional cysteine-containing counterparts (Cys-GPxs), which make up the majority of the natural GPxs but display unsuitable activity and stability for industrial applications. This study first heterologously expressed and characterized a Cys-GPx from Lactococcus lactis (LlGPx), systematically exchanged all the three Cys to Sec and introduced an extra Sec. The results showed that the insertion of Sec at the active site could effectively increase the enzyme activity and confer a lower optimal pH value on the mutants. The double mutant C36U/L157U increased by 2.65 times (5.12 U/mg). The thermal stability of the C81U mutant was significantly improved. These results suggest that site-directed Sec incorporation can effectively improve the enzymatic properties of LlGPx, which may be also used for the protein engineering of other industrial enzymes containing catalytic or other functional cysteine residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Applicable.

Peer Review

Externally peer-reviewed.

Consent to Publish

Not applicable.

References

  1. Moosmayer, D., Hilpmann, A., Hoffmann, J., Schnirch, L., Zimmermann, K., Badock, V., Furst, L., Eaton, J. K., Viswanathan, V. S., Schreiber, S. L., Gradl, S., & Hillig, R. C. (2021). Crystal structures of the selenoprotein glutathione peroxidase 4 in its apo form and in complex with the covalently bound inhibitor ML162. Acta Crystallographica Section D Structural Biology, 77, 237–248. https://doi.org/10.1107/S2059798320016125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dimastrogiovanni, D., Anselmi, M., Miele, A. E., Boumis, G., Petersson, L., Angelucci, F., Nola, A. D., Brunori, M., & Bellelli, A. (2010). Combining crystallography and molecular dynamics: The case of Schistosoma mansoni phospholipid glutathione peroxidase. Proteins, 78, 259–270. https://doi.org/10.1002/prot.22536

    Article  CAS  PubMed  Google Scholar 

  3. Toppo, S., Vanin, S., Bosello, V., & Tosatto, S. C. (2008). Evolutionary and structural insights into the multifaceted glutathione peroxidase (GPx) super family. Antioxidants and Redox Signaling, 10, 1501–1514. https://doi.org/10.1089/ars.2008.2057

    Article  CAS  PubMed  Google Scholar 

  4. Brigelius-Flohe, R., & Maiorino, M. (2013). Glutathione peroxidases. Biochimica Biophysica Acta, 1830, 3289–3303. https://doi.org/10.1016/j.bbagen.2012.11.020

    Article  CAS  Google Scholar 

  5. Tosatto, S. C., Bosello, V., Fogolari, F., Mauri, P., Roveri, A., Toppo, S., Flohe, L., Ursini, F., & Maiorino, M. (2008). The catalytic site of glutathione peroxidases. Antioxidants and Redox Signaling, 10, 1515–1526. https://doi.org/10.1089/ars.2008.2055

    Article  CAS  PubMed  Google Scholar 

  6. Johansson, L., Gafvelin, G., & Arner, E. S. (2005). Selenocysteine in proteins—Properties and biotechnological use. Biochimica Biophysica Acta, 1726, 1–13. https://doi.org/10.1016/j.bbagen.2005.05.010

    Article  CAS  Google Scholar 

  7. Rocher, C., Lalanne, J. L., & Chaudiere, J. (1992). Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase. European Journal of Biochemistry, 205, 955–960. https://doi.org/10.1111/j.1432-1033.1992.tb16862.x

    Article  CAS  PubMed  Google Scholar 

  8. Maiorino, M., Aumann, K. D., Brigelius-Flohe, R., Doria, D., van den Heuvel, J., McCarthy, J., Roveri, A., Ursini, F., & Flohe, L. (1995). Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biological Chemistry Hoppe Seyler, 376, 651–660. https://doi.org/10.1515/bchm3.1995.376.11.651

    Article  CAS  PubMed  Google Scholar 

  9. Bunaciu, A. A., Danet, A. F., Fleschin, S., & Aboul-Enein, H. Y. (2016). Recent applications for in vitro antioxidant activity assay. Critical Reviews in Analytical Chemistry, 46, 389–399. https://doi.org/10.1080/10408347.2015.1101369

    Article  CAS  PubMed  Google Scholar 

  10. Edmondson, D. E. (2014). Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: Biological implications. Current Pharmaceutical Design, 20, 155–160. https://doi.org/10.2174/13816128113190990406

    Article  CAS  PubMed  Google Scholar 

  11. Pan, T., Liu, Y., Si, C., Bai, Y., Qiao, S., Zhao, L., Xu, J., Dong, Z., Luo, Q., & Liu, J. (2017). Construction of ATP-switched allosteric antioxidant selenoenzyme. ACS Catalysis, 7, 1875–1879. https://doi.org/10.1021/acscatal.6b03274

    Article  CAS  Google Scholar 

  12. Cheng, Q., & Arner, E. S. (2017). Selenocysteine insertion at a predefined UAG codon in a release factor 1 (RF1)-depleted Escherichia coli host strain bypasses species barriers in recombinant selenoprotein translation. Journal of Biological Chemistry, 292, 5476–5487. https://doi.org/10.1074/jbc.M117.776310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Isaacs, F. J., Carr, P. A., Wang, H. H., Lajoie, M. J., Sterling, B., Kraal, L., Tolonen, A. C., Gianoulis, T. A., Goodman, D. B., Reppas, N. B., Emig, C. J., Bang, D., Hwang, S. J., Jewett, M. C., Jacobson, J. M., & Church, G. M. (2011). Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 333, 348–353. https://doi.org/10.1126/science.1205822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lajoie, M. J., Rovner, A. J., Goodman, D. B., Aerni, H. R., Haimovich, A. D., Kuznetsov, G., Mercer, J. A., Wang, H. H., Carr, P. A., Mosberg, J. A., Rohland, N., Schultz, P. G., Jacobson, J. M., Rinehart, J., Church, G. M., & Isaacs, F. J. (2013). Genomically recoded organisms expand biological functions. Science, 342, 357–360. https://doi.org/10.1126/science.1241459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flohe, L., & Brand, I. (1970). Some hints to avoid pitfalls in quantitative determination of glutathione peroxidase (EC 1.11.1.9). Zeitschrift für Klinische Chemie und Klinische Biochemie, 8, 156–161. https://doi.org/10.1515/cclm.1970.8.2.156

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, W. J., He, Y. X., Yang, Z., Yu, J., Chen, Y., & Zhou, C. Z. (2008). Crystal structure of glutathione-dependent phospholipid peroxidase Hyr1 from the yeast Saccharomyces cerevisiae. Proteins, 73, 1058–1062. https://doi.org/10.1002/prot.22220

    Article  CAS  PubMed  Google Scholar 

  17. Turanov, A. A., Lobanov, A. V., Hatfield, D. L., & Gladyshev, V. N. (2013). UGA codon position-dependent incorporation of selenocysteine into mammalian selenoproteins. Nucleic Acids Research, 41, 6952–6959. https://doi.org/10.1093/nar/gkt409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DallaTiezza, M., Bickelhaupt, F. M., Flohe, L., Maiorino, M., Ursini, F., & Orian, L. (2020). A dual attack on the peroxide bond. The common principle of peroxidatic cysteine or selenocysteine residues. Redox Biology, 34, 101540. https://doi.org/10.1016/j.redox.2020.101540

    Article  CAS  Google Scholar 

  19. Toppo, S., Flohe, L., Ursini, F., Vanin, S., & Maiorino, M. (2009). Catalytic mechanisms and specificities of glutathione peroxidases: Variations of a basic scheme. Biochimica Biophysica Acta, 1790, 1486–1500. https://doi.org/10.1016/j.bbagen.2009.04.007

    Article  CAS  Google Scholar 

  20. Brigelius-Flohe, R., & Flohe, L. (2011). Basic principles and emerging concepts in the redox control of transcription factors. Antioxidants and Redox Signaling, 15, 2335–2381. https://doi.org/10.1089/ars.2010.3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zeida, A., Trujillo, M., Ferrer-Sueta, G., Denicola, A., Estrin, D. A., & Radi, R. (2019). Catalysis of peroxide reduction by fast reacting protein thiols. Chemical Reviews, 119, 10829–10855. https://doi.org/10.1021/acs.chemrev.9b00371

    Article  CAS  PubMed  Google Scholar 

  22. Epp, O., Ladenstein, R., & Wendel, A. (1983). The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. European Journal of Biochemistry, 133, 51–69. https://doi.org/10.1111/j.1432-1033.1983.tb07429.x

    Article  CAS  PubMed  Google Scholar 

  23. Ladenstein, R., Epp, O., Bartels, K., Jones, A., Huber, R., & Wendel, A. (1979). Structure analysis and molecular model of the selenoenzyme glutathione peroxidase at 2.8 A resolution. Journal of Molecular Biology, 134, 199–218. https://doi.org/10.1016/0022-2836(79)90032-9

    Article  CAS  PubMed  Google Scholar 

  24. Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., & Denicola, A. (2011). Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chemical Research in Toxicology, 24, 434–450. https://doi.org/10.1021/tx100413v

    Article  CAS  PubMed  Google Scholar 

  25. Hildebrandt, T., Knuesting, J., Berndt, C., Morgan, B., & Scheibe, R. (2015). Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biological Chemistry, 396, 523–537. https://doi.org/10.1515/hsz-2014-0295

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China General Project (31972050).

Author information

Authors and Affiliations

Authors

Contributions

Conception/design of study—CHW, YHF; data acquisition—YHF, YMZ; data analysis/interpretation—YHF, YMZ, SYY, JJP, CXL, CHW; drafting manuscript—YHF, CHW; critical revision of manuscript—YHF, CHW; final approval and accountability—YHF, CHW. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cheng-Hua Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 698 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, YH., Zhang, YM., Yue, SY. et al. Improving Catalytic Activity, Acid-Tolerance, and Thermal Stability of Glutathione Peroxidase by Systematic Site-Directed Selenocysteine Incorporation. Mol Biotechnol 65, 1644–1652 (2023). https://doi.org/10.1007/s12033-023-00682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00682-6

Keywords

Navigation