Skip to main content

Advertisement

Log in

Mechanism of Resveratrol Improving Ischemia–Reperfusion Injury by Regulating Microglial Function Through microRNA-450b-5p/KEAP1/Nrf2 Pathway

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Alterations in the M1/M2 polarization phenotype significantly affect disease progression. Antioxidant and anti-inflammatory protective effects of resveratrol (Res) have been demonstrated. This paper tested the hypothesis that Res could protect against cerebral ischemia–reperfusion injury (CI/RI) by modulating microglial polarization via the miR-450b-5p/KEAP1/Nrf2 pathway. Rats were first treated with Res and adenovirus that interfered with miR-450b-5p or KEAP1, and then established a middle cerebral artery occlusion-reperfusion model using modified nylon sutures. Rats were then evaluated for neurological and behavioral functions, and markers of M2 microglia were detected by immunofluorescence staining. Additionally, the signature patterns of miR-450b-5p, KEAP1, and Nrf2 were determined. The collected data demonstrated that Res exerted neuroprotective effects in CI/RI by promoting microglial M2 polarization. Additionally, Res could regulate the Nrf2 pathway by targeting KEAP1 by up-regulating miR-450b-5p. Up-regulating miR-450b-5p or down-regulating KEAP1 could further promote the protective effect of Res, while down-regulating miR-450b-5p or up-regulating KEAP1 worked oppositely. Our study demonstrates that Res exerts neuroprotective effects on microglial M2 polarization through the miR-450b-5p/KEAP1/Nrf2 pathway during CI/RI.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Shiber, J., Fontane, E., & Adewale, A. (2010). Stroke registry: Hemorrhagic vs ischemic strokes. The American Journal of Emergency Medicine, 28(3), 331–333.

    Article  PubMed  Google Scholar 

  2. Powers, W., et al. (2019). Guidelines for the early management of patients with acute ischemic stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 50(12), e344–e418.

    Article  PubMed  Google Scholar 

  3. Liu, K., et al. (2022). viaAcute administration of metformin protects against neuronal apoptosis induced by cerebral ischemia-reperfusion injury regulation of the AMPK/CREB/BDNF pathway. Frontiers in Pharmacology, 13, 832611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. (1995). Tissue plasminogen activator for acute ischemic stroke. The New England Journal of Medicine, 333(24), 1581–1587.

    Article  Google Scholar 

  5. Lin, L., Wang, X., & Yu, Z. (2016). Ischemia-reperfusion Injury in the Brain: Mechanisms and Potential Therapeutic Strategies. Biochemistry & Pharmacology, 5(4), 213.

    Google Scholar 

  6. Rabinstein, A. (2020). Update on treatment of acute ischemic stroke. Continuum (Minneapolis, Minn.), 26(2), 268–286.

    PubMed  Google Scholar 

  7. Chen, Y., & Li, Z. (2021). Protective effects of propofol on rats with cerebral ischemia-reperfusion injury via the PI3K/Akt pathway. Journal of Molecular Neuroscience : MN, 71(4), 810–820.

    Article  CAS  PubMed  Google Scholar 

  8. Tobin, M., et al. (2014). Neurogenesis and inflammation after ischemic stroke: What is known and where we go from here. Journal of Cerebral Blood Flow and Metabolism, 34(10), 1573–1584.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Colonna, M., & Butovsky, O. (2017). Microglia function in the central nervous system during health and neurodegeneration. Annual Review of Immunology, 35, 441–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bu, J., et al. (2019). viaAcacetin protects against cerebral ischemia-reperfusion injury the NLRP3 signaling pathway. Neural Regeneration Research, 14(4), 605–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, G., et al. (2014). The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathology (Zurich, Switzerland), 24(6), 631–653.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Y., et al. (2020). Lack of sphingomyelin synthase 2 reduces cerebral ischemia/reperfusion injury by inhibiting microglial inflammation in mice. Experimental and Therapeutic Medicine, 20(6), 241.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, K., et al. (2020). Melatonin enhances the therapeutic effect of plasma exosomes against cerebral ischemia-induced pyroptosis through the TLR4/NF-κB pathway. Frontiers in Neuroscience, 14, 848.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen, S., et al. (2020). Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Molecular Brain, 13(1), 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song, Y., et al. (2019). M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics, 9(10), 2910–2923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sarkaki, A., et al. (2021). Therapeutic effects of resveratrol on ischemia-reperfusion injury in the nervous system. Neurochemical Research, 46(12), 3085–3102.

    Article  CAS  PubMed  Google Scholar 

  17. Tufekci, K., et al. (2021). Resveratrol inhibits NLRP3 inflammasome-induced pyroptosis and miR-155 expression in microglia through Sirt1/AMPK pathway. Neurotoxicity Research, 39(6), 1812–1829.

    Article  CAS  PubMed  Google Scholar 

  18. Li, Z., et al. (2016). Resveratrol protects CA1 neurons against focal cerebral ischemic reperfusion-induced damage via the ERK-CREB signaling pathway in rats. Pharmacology, Biochemistry, and Behavior, 21, 21–27.

    Article  CAS  Google Scholar 

  19. Li, H., et al. (2021). Resveratrol attenuates rotenone-induced inflammation and oxidative stress via STAT1 and Nrf2/Keap1/SLC7A11 pathway in a microglia cell line. Pathology, Research and Practice, 225, 153576.

    Article  PubMed  Google Scholar 

  20. McCubrey, J. A., et al. (2017). Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY), 9(6), 1477–1536.

    Article  CAS  PubMed  Google Scholar 

  21. Wen, W., et al. (2020). Resveratrol regulates muscle fiber type conversion via miR-22-3p and AMPK/SIRT1/PGC-1alpha pathway. Journal of Nutritional Biochemistry, 77, 108297.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, Y., et al. (2021). Resveratrol promotes skin wound healing by regulating the miR-212/CASP8 axis. Laboratory Investigation, 101(10), 1363–1370.

    Article  CAS  PubMed  Google Scholar 

  23. Forouzanfar, F., et al. (2019). Causes and consequences of MicroRNA dysregulation following cerebral ischemia-reperfusion injury. CNS & Neurological Disorders: Drug Targets, 18(3), 212–221.

    Article  CAS  Google Scholar 

  24. Hu, Y., et al. (2015). MicroRNAs regulate mitochondrial function in cerebral ischemia-reperfusion injury. International Journal of Molecular Sciences, 16(10), 24895–24917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhan, J., et al. (2022). Role and mechanism of the lncRNA SNHG1/miR-450b-5p/IGF1 axis in the regulation of myocardial ischemia reperfusion injury. Molecular Medicine Reports. https://doi.org/10.3892/mmr.2022.12692

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bellezza, I., et al. (2018). Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta, Molecular Cell Research, 1865(5), 721–733.

    Article  CAS  PubMed  Google Scholar 

  27. Baird, L., & Yamamoto, M. (2020). The molecular mechanisms regulating the KEAP1-NRF2 pathway. Molecular and Cellular Biology, 40, 13. https://doi.org/10.1128/MCB.00099-20

    Article  Google Scholar 

  28. Ucar, B. I., et al. (2021). Pharmacological protection against ischemia-reperfusion injury by regulating the Nrf2-Keap1-ARE signaling pathway. Antioxidants (Basel), 10(6), 823.

    Article  CAS  PubMed  Google Scholar 

  29. Shi, M., et al. (2022). Diosmetin alleviates cerebral ischemia-reperfusion injury through Keap1-mediated Nrf2/ARE signaling pathway activation and NLRP3 inflammasome inhibition. Environmental Toxicology, 37(6), 1529–1542.

    Article  CAS  PubMed  Google Scholar 

  30. Yao, Y., et al. (2022). Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139-5p/FoxO1/Keap1/Nrf2 axis. International Immunopharmacology, 105, 108582.

    Article  CAS  PubMed  Google Scholar 

  31. Long, Y., et al. (2020). Nose to brain drug delivery: A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacological Research, 159, 104795.

    Article  CAS  PubMed  Google Scholar 

  32. Garrigue, P., et al. (2021). Long-term administration of resveratrol at low doses improves neurocognitive performance as well as cerebral blood flow and modulates the inflammatory pathways in the brain. The Journal of Nutritional Biochemistry, 97, 108786.

    Article  CAS  PubMed  Google Scholar 

  33. Grewal, A., Singh, N., & Singh, T. (2019). Effects of resveratrol postconditioning on cerebral ischemia in mice: Role of the sirtuin-1 pathway. Canadian Journal of Physiology and Pharmacology, 97(11), 1094–1101.

    Article  CAS  PubMed  Google Scholar 

  34. Lu, T., et al. (2022). Neuroprotective effects of alisol A 24-acetate on cerebral ischaemia-reperfusion injury are mediated by regulating the PI3K/AKT pathway. Journal of Neuroinflammation, 19(1), 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hernández, I., et al. (2021). Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. Cells, 10(7), 1639.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Subedi, L., & Gaire, B. (2021). Phytochemicals as regulators of microglia/macrophages activation in cerebral ischemia. Pharmacological Research, 165, 105419.

    Article  CAS  PubMed  Google Scholar 

  37. Li, L., et al. (2021). Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats. International Immunopharmacology, 92, 107335.

    Article  CAS  PubMed  Google Scholar 

  38. Li, T., et al. (2020). LncRNA MEG3 regulates microglial polarization through KLF4 to affect cerebral ischemia-reperfusion injury. Journal of Applied Physiology (Bethesda, MD: 1985), 129(6), 1460–1467.

    Article  CAS  PubMed  Google Scholar 

  39. Lu, Y., et al. (2021). Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways. Biochemical Pharmacology, 186, 114464.

    Article  CAS  PubMed  Google Scholar 

  40. Bartel, D. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  41. Budnik, V., Ruiz-Cañada, C., & Wendler, F. (2016). Extracellular vesicles round off communication in the nervous system. Nature Reviews. Neuroscience, 17(3), 160–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, Z., et al. (2020). Inhibition of miR-450b-5p ameliorates hepatic ischemia/reperfusion injury via targeting CRYAB. Cell Death & Disease, 11(6), 455.

    Article  CAS  Google Scholar 

  43. Luo, X., et al. (2019). Plasma exosomal miR-450b-5p as a possible biomarker and therapeutic target for transient ischaemic attacks in rats. Journal of Molecular Neuroscience : MN, 69(4), 516–526.

    Article  CAS  PubMed  Google Scholar 

  44. Hou, Y., et al. (2018). Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes & Diseases, 5(3), 245–255.

    Article  CAS  Google Scholar 

  45. Zhao, R., et al. (2019). Resveratrol ameliorates brain injury via the TGF-β-mediated ERK signaling pathway in a rat model of cerebral hemorrhage. Experimental and Therapeutic Medicine, 18(5), 3397–3404.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ren, J., et al. (2011). Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats. Neurochemical Research, 36(12), 2352–2362.

    Article  CAS  PubMed  Google Scholar 

  47. Chen, S., et al. (2021). Exosomal miR-512-3p derived from mesenchymal stem cells inhibits oxidized low-density lipoprotein-induced vascular endothelial cells dysfunction via regulating Keap1. Journal of Biochemical and Molecular Toxicology, 35(6), 1–11.

    Article  PubMed  Google Scholar 

  48. Kobayashi, M., & Yamamoto, M. (2005). Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxidants & Redox Signaling, 7, 385–394.

    Article  CAS  Google Scholar 

  49. Becatti, M., et al. (2012). SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. Cellular and Molecular Life Sciences, 69(13), 2245–2260.

    Article  CAS  PubMed  Google Scholar 

  50. Huang, R., et al. (2019). MiR-34b protects against focal cerebral ischemia-reperfusion (I/R) injury in rat by targeting Keap1. Journal of Stroke and Cerebrovascular Diseases, 28(1), 1–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Inner Mongolia Natural Nature Fund Project (No.2021MS08042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Wang.

Ethics declarations

Conflict of interests

The authors declared no conflict of interest.

Ethical Approval

All animal experiments were complied with the ARRIVE guidelines and performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The experiments were approved by the Institutional Animal Care and Use Committee of Inner Mongolia Baotou Central Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chen, J., Zhang, J. et al. Mechanism of Resveratrol Improving Ischemia–Reperfusion Injury by Regulating Microglial Function Through microRNA-450b-5p/KEAP1/Nrf2 Pathway. Mol Biotechnol 65, 1498–1507 (2023). https://doi.org/10.1007/s12033-022-00646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00646-2

Keywords

Navigation