Skip to main content

Advertisement

Log in

Dioxinodehydroeckol: A Potential Neuroprotective Marine Compound Identified by In Silico Screening for the Treatment and Management of Multiple Brain Disorders

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders such as Alzheimer’s disease (AD), Glioblastoma multiforme (GBM), Amyotrophic lateral sclerosis (ALS), and Parkinson’s disease (PD) are some of the most prevalent neurodegenerative disorders in humans. Even after a variety of advanced therapies, prognosis of all these disorders is not favorable, with survival rates of 14–20 months only. To further improve the prognosis of these disorders, it is imperative to discover new compounds which will target effector proteins involved in these disorders. In this study, we have focused on in silico screening of marine compounds against multiple target proteins involved in AD, GBM, ALS, and PD. Fifty marine-origin compounds were selected from literature, out of which, thirty compounds passed ADMET parameters. Ligand docking was performed after ADMET analysis for AD, GBM, ALS, and PD-associated proteins in which four protein targets Keap1, Ephrin A2, JAK3 Kinase domain, and METTL3-METTL14 N6-methyladenosine methyltransferase (MTA70) were found to be binding strongly with the screened compound Dioxinodehydroeckol (DHE). Molecular dynamics simulations were performed at 100 ns with triplicate runs to validate the docking score and assess the dynamics of DHE interactions with each target protein. The results indicated Dioxinodehydroeckol, a novel marine compound, to be a putative inhibitor among all the screened molecules, which might be effective against multiple target proteins involved in neurological disorders, requiring further in vitro and in vivo validations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors state that the data generated to reach the conclusion of this article are included in the article.

Abbreviations

Aβ:

Amyloid beta

Ach:

Acetylcholine

AD:

Alzheimer’s Disease

ALS:

Amyotrophic lateral sclerosis

APOE4:

Apolipoprotein E4

APP:

Amyloid precursor protein

BBB:

Blood: Brain Barrier

CNS:

Central Nervous System

CADD:

Computer: aided drug design

DHE:

Dioxinodehydroeckol

GBM:

Glioblastoma multiforme

GO:

Gene Ontology

LRRK2:

Leucine-rich repeat kinase 2

NMDA:

N-methyl D-aspartate

NIST:

National Institute of Standards and Technology

PD:

Parkinson’s Disease

RMSD:

Root Mean Square Deviation

RMSF:

Root mean square fluctuation

SSE:

Secondary structural elements

TMZ:

Temozolomide

TYK2:

Tyrosine kinase 2

VEGFR:

Vascular endothelial growth factor receptor

WHO:

World Health Organization

ZFD:

Zinc Finger Domain

References

  1. Tarawneh, R., & Holtzman, D. M. (2012). The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harbor Perspectives in Medicine, 2(5), a006148.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Breijyeh, Z., & Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 25(24), 5789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim, N., & Lee, H. J. (2020). Target enzymes considered for the treatment of Alzheimer’s disease and parkinson’s disease. BioMedical Research International, 2020, 2010728.

    Article  Google Scholar 

  4. Vitovcova, B., Skarkova, V., Rudolf, K., & Rudolf, E. (2020). Biology of glioblastoma multiforme-exploration of mitotic catastrophe as a potential treatment modality. International Journal Molecular Science, 21(15), 5324.

    Article  CAS  Google Scholar 

  5. Silantyev, A. S., Falzone, L., Libra, M., Gurina, O. I., Kardashova, K. S., Nikolouzakis, T. K., Nosyrev, A. E., Sutton, C. W., Mitsias, P. D., & Tsatsakis, A. (2019). Current and future trends on diagnosis and prognosis of glioblastoma: From molecular biology to proteomics. Cells, 8(8), 863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ou, A., Yung, W. K. A., & Majd, N. (2020). Molecular mechanisms of treatment resistance in glioblastoma. International Journal Molecular Science, 22(1), 351.

    Article  Google Scholar 

  7. Drake, L. R., Hillmer, A. T., & Cai, Z. (2020). Approaches to PET imaging of glioblastoma. Molecules, 25(3), 568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Tellingen, O., Yetkin-Arik, B., de Gooijer, M. C., Wesseling, P., Wurdinger, T., & de Vries, H. E. (2015). Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resistance Updates, 19, 1–12.

    Article  PubMed  Google Scholar 

  9. Abou-Khalil, B. (2008). Levetiracetam in the treatment of epilepsy. Neuropsychiatric Disease and Treatment, 4(3), 507–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Batra, G., Jain, M., Singh, R. S., Sharma, A. R., Singh, A., Prakash, A., & Medhi, B. (2019). Novel therapeutic targets for amyotrophic lateral sclerosis. Indian Journal Pharmacol, 51(6), 418–425.

    Article  CAS  Google Scholar 

  11. Oggiano, R., Pisano, A., Sabalic, A., Farace, C., Fenu, G., Lintas, S., Forte, G., Bocca, B., & Madeddu, R. (2021). An overview on amyotrophic lateral sclerosis and cadmium. Neurological Sciences, 42(2), 531–537.

    Article  PubMed  Google Scholar 

  12. Nowicka, N., Juranek, J., Juranek, J. K., & Wojtkiewicz, J. (2019). Risk factors and emerging therapies in amyotrophic lateral sclerosis. International Journal Molecular Science, 20(11), 2616.

    Article  CAS  Google Scholar 

  13. Wakade, C., & Chong, R. (2014). A novel treatment target for Parkinson’s disease. Journal of the Neurological Sciences, 347(1–2), 34–38.

    Article  CAS  PubMed  Google Scholar 

  14. Simon, D. K., Tanner, C. M., & Brundin, P. (2020). Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clinics in Geriatric Medicine, 36(1), 1–12.

    Article  PubMed  Google Scholar 

  15. Dexter, D. T., & Jenner, P. (2013). Parkinson disease: From pathology to molecular disease mechanisms. Free Radical Biology & Medicine, 62, 132–144.

    Article  CAS  Google Scholar 

  16. Teng, Y., Liu, Z., Chen, X., Liu, Y., Geng, F., Le, W., Jiang, H., & Yang, L. (2021). Conditional deficiency of m6A methyltransferase Mettl14 in substantia nigra alters dopaminergic neuron function. Journal of Cellular and Molecular Medicine, 25(17), 8567–8572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cacabelos, R. (2017). Parkinson’s disease: from pathogenesis to pharmacogenomics. International Journal of Molecular Sciences, 18(3), 551.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Krüger, A., Maltarollo, V. G. , Wrenger, C., & Kronenberger, T. (2019). ADME Profiling in Drug Discovery and a New Path Paved on Silica. In V. Gaitonde, P. Karmakar, & A. Trivedi (Eds.), Drug Discovery and Development - New Advances. IntechOpen.

  19. Lu, S. H., Wu, J. W., Liu, H. L., Zhao, J. H., Liu, K. T., Chuang, C. K., Lin, H. Y., Tsai, W. B., & Ho, Y. (2011). The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies. Journal of Biomedical Science, 18, 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384–13421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sana Khalid, M. A., Saeed, F., Bader-Ul-Ain, H., & Suleria, H. A. R. (2018). Therapeutic Potential of Seaweed Bioactive Compounds, in Seaweed Biomaterials. Intechopen.

    Google Scholar 

  23. Huang, R., Zhou, X., Xu, T., Yang, X., & Liu, Y. (2010). Diketopiperazines from marine organisms. Chemistry & Biodiversity, 7(12), 2809–2829.

    Article  CAS  Google Scholar 

  24. Varijakzhan, D., Loh, J. Y., Yap, W. S., Yusoff, K., Seboussi, R., Lim, S. E., Lai, K. S., & Chong, C. M. (2021). Bioactive compounds from marine sponges: Fundamentals and applications. Marine Drugs, 19(5), 246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamed, I., Özogul, F., Özogul, Y., & Regenstein, J. M. (2015). Marine bioactive compounds and their health benefits: A review. Comprehensive Reviews in Food Science and Food Safety, 14, 446–465.

    Article  CAS  Google Scholar 

  26. Yan, J., Liu, W., Cai, J., Wang, Y., Li, D., Hua, H., & Cao, H. (2021). Advances in phenazines over the past decade: Review of their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies. Marine Drugs, 19(11), 610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mehbub, M. F., Lei, J., Franco, C., & Zhang, W. (2014). Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Marine Drugs, 12(8), 4539–4577.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Donia, M., & Hamann, M. T. (2003). Marine natural products and their potential applications as anti-infective agents. The Lancet Infectious Diseases, 3(6), 338–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lever, J., Brkljaca, R., Kraft, G., & Urban, S. (2020). Natural products of marine macroalgae from South Eastern Australia, with emphasis on the Port Phillip Bay and heads regions of Victoria. Marine Drugs, 18(3), 142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hur, S., Lee, H., Kim, Y., Lee, B. H., Shin, J., & Kim, T. Y. (2008). Sargaquinoic acid and sargachromenol, extracts of sargassum sagamianum, induce apoptosis in HaCaT cells and mice skin: Its potentiation of UVB-induced apoptosis. European Journal of Pharmacology, 582(1–3), 1–11.

    Article  CAS  PubMed  Google Scholar 

  31. Cotas, J., Leandro, A., Monteiro, P., Pacheco, D., Figueirinha, A., Goncalves, A. M. M., da Silva, G. J., & Pereira, L. (2020). Seaweed phenolics: From extraction to applications. Marine Drugs, 18(8), 384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lakshmi, S., Prakash, P., Essa, M. M., Qoronfleh, W. M., Akbar, M., Song, B. J., Kumar, S., & Elumalai, P. (2018). Marine derived bioactive compounds for treatment of Alzheimer’s disease. Frontiers in Bioscience (Elite Edition), 10(3), 537–548.

    PubMed  Google Scholar 

  33. Abdallah, M. M., Fernandez, N., Matias, A. A., & Bronze, M. D. R. (2020). Hyaluronic acid and chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. Carbohydrate Polymers, 243, 116441.

    Article  CAS  PubMed  Google Scholar 

  34. Silva, M., Seijas, P., & Otero, P. (2021). Exploitation of marine molecules to manage Alzheimer’s disease. Marine Drugs, 19(7), 373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Adnan, M., Alshammari, E., Patel, M., Amir Ashraf, S., Khan, S., & Hadi, S. (2018). Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: Necessity for green chemistry. PeerJ, 6, e5049.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sudom, A., Talreja, S., Danao, J., Bragg, E., Kegel, R., Min, X., Richardson, J., Zhang, Z., Sharkov, N., Marcora, E., Thibault, S., Bradley, J., Wood, S., Lim, A. C., Chen, H., Wang, S., Foltz, I. N., Sambashivan, S., & Wang, Z. (2018). Molecular basis for the loss-of-function effects of the Alzheimer’s disease-associated R47H variant of the immune receptor TREM2. Journal of Biological Chemistry, 293(32), 12634–12646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lo, S. C., Li, X., Henzl, M. T., Beamer, L. J., & Hannink, M. (2006). Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO Journal, 25(15), 3605–3617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hong, L., Koelsch, G., Lin, X., Wu, S., Terzyan, S., Ghosh, A. K., Zhang, X. C., & Tang, J. (2000). Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science, 290(5489), 150–153.

    Article  CAS  PubMed  Google Scholar 

  40. Himanen, J. P., Goldgur, Y., Miao, H., Myshkin, E., Guo, H., Buck, M., Nguyen, M., Rajashankar, K. R., Wang, B., & Nikolov, D. B. (2009). Ligand recognition by A-class Eph receptors: Crystal structures of the EphA2 ligand-binding domain and the EphA2/ephrin-A1 complex. EMBO Reports, 10(7), 722–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, X., Pickin, K. A., Bose, R., Jura, N., Cole, P. A., & Kuriyan, J. (2007). Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature, 450(7170), 741–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, Y. W., Allen, M. D., Veprintsev, D. B., Lowe, J., & Bycroft, M. (2004). The structure of the AXH domain of spinocerebellar ataxin-1. Journal of Biological Chemistry, 279(5), 3758–3765.

    Article  CAS  PubMed  Google Scholar 

  43. Duan, J. J., Lu, Z., Jiang, B., Yang, B. V., Doweyko, L. M., Nirschl, D. S., Haque, L. E., Lin, S., Brown, G., Hynes, J., Jr., Tokarski, J. S., Sack, J. S., Khan, J., Lippy, J. S., Zhang, R. F., Pitt, S., Shen, G., Pitts, W. J., Carter, P. H., … Wrobleski, S. T. (2014). Discovery of pyrrolo[1,2-b]pyridazine-3-carboxamides as Janus kinase (JAK) inhibitors. Bioorganic & Medicinal Chemistry Letters, 24(24), 5721–5726.

    Article  CAS  Google Scholar 

  44. Briknarová, K., Grishaev, A., Bányai, L., Tordai, H., Patthy, L., & Llinás, M. (1999). The second type II module from human matrix metalloproteinase 2: Structure, function and dynamics. Structure, 7(10), 1235-S2.

    Article  PubMed  Google Scholar 

  45. Cavalier, M. C., Kim, S. G., Neau, D., & Lee, Y. H. (2012). Molecular basis of the fructose-2,6-bisphosphatase reaction of PFKFB3: Transition state and the C-terminal function. Proteins, 80(4), 1143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Okatsu, K., Sato, Y., Yamano, K., Matsuda, N., Negishi, L., Takahashi, A., Yamagata, A., Goto-Ito, S., Mishima, M., Ito, Y., Oka, T., Tanaka, K., & Fukai, S. (2018). Structural insights into ubiquitin phosphorylation by PINK1. Science and Reports, 8(1), 10382.

    Article  Google Scholar 

  47. Gilsbach, B. K., Messias, A. C., Ito, G., Sattler, M., Alessi, D. R., Wittinghofer, A., & Kortholt, A. (2015). Structural characterization of LRRK2 inhibitors. Journal of Medicinal Chemistry, 58(9), 3751–6.

    Article  CAS  PubMed  Google Scholar 

  48. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–12.

    Article  CAS  PubMed  Google Scholar 

  49. Ropp, P. J., Spiegel, J. O., Walker, J. L., Green, H., Morales, G. A., Milliken, K. A., Ringe, J. J., & Durrant, J. D. (2019). Gypsum-DL: An open-source program for preparing small-molecule libraries for structure-based virtual screening. Journal Cheminformation, 11(1), 34.

    Article  Google Scholar 

  50. Bowers, K.J.a.C., David E. and Xu, Huafeng and Dror, Ron O. and Eastwood, Michael P. and Gregersen, Brent A. and Klepeis, John L. and Kolossvary, Istvan and Moraes, Mark A. and Sacerdoti, Federico D. and Salmon, John K. and Shan, Yibing and Shaw, David E. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. in SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. . 2006. IEEE.

  51. Hildebrand, P. W., Rose, A. S., & Tiemann, J. K. S. (2019). Bringing Molecular dynamics simulation data into view. Trends in Biochemical Sciences, 44(11), 902–913.

    Article  CAS  PubMed  Google Scholar 

  52. Rasheed, M. A., Iqbal, M. N., Saddick, S., Ali, I., Khan, F. S., Kanwal, S., Ahmed, D., Ibrahim, M., Afzal, U., & Awais, M. (2021). Identification of lead compounds against Scm (fms10) in enterococcus faecium using computer aided drug designing. Life (Basel), 11(2), 77.

    CAS  PubMed  Google Scholar 

  53. Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–19.

    Article  CAS  PubMed  Google Scholar 

  54. Maiorov, V. N., & Crippen, G. M. (1994). Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. Journal of Molecular Biology, 235(2), 625–34.

    Article  CAS  PubMed  Google Scholar 

  55. Ramsey, C. P., Glass, C. A., Montgomery, M. B., Lindl, K. A., Ritson, G. P., Chia, L. A., Hamilton, R. L., Chu, C. T., & Jordan-Sciutto, K. L. (2007). Expression of Nrf2 in neurodegenerative diseases. Journal of Neuropathology and Experimental Neurology, 66(1), 75–85.

    Article  CAS  PubMed  Google Scholar 

  56. Sarlette, A., Krampfl, K., Grothe, C., Neuhoff, N., Dengler, R., & Petri, S. (2008). Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurology, 67(11), 1055–62.

    Article  CAS  PubMed  Google Scholar 

  57. Kerr, F., Sofola-Adesakin, O., Ivanov, D. K., Gatliff, J., Gomez Perez-Nievas, B., Bertrand, H. C., Martinez, P., Callard, R., Snoeren, I., Cocheme, H. M., Adcott, J., Khericha, M., Castillo-Quan, J. I., Wells, G., Noble, W., Thornton, J., & Partridge, L. (2017). Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer’s disease. PLoS Genetics, 13(3), e1006593.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Horie, Y., Suzuki, T., Inoue, J., Iso, T., Wells, G., Moore, T. W., Mizushima, T., Dinkova-Kostova, A. T., Kasai, T., Kamei, T., Koshiba, S., & Yamamoto, M. (2021). Molecular basis for the disruption of Keap1-Nrf2 interaction via hinge & latch mechanism. Communications Biology, 4(1), 576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo, W., Vandoorne, T., Steyaert, J., Staats, K. A., & Van Den Bosch, L. (2020). The multifaceted role of kinases in amyotrophic lateral sclerosis: Genetic, pathological and therapeutic implications. Brain, 143(6), 1651–1673.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Trieu, V. N., Liu, R., Liu, X. P., & Uckun, F. M. (2000). A specific inhibitor of janus kinase-3 increases survival in a transgenic mouse model of amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications, 267(1), 22–5.

    Article  CAS  PubMed  Google Scholar 

  61. Tan, L., Akahane, K., McNally, R., Reyskens, K. M. S. E., Ficarro, S. B., Liu, S., Herter-Sprie, G. S., Koyama, S., Pattison, M. J., Labella, K., Johannessen, L., Akbay, E. A., Wong, K.-K., Frank, D. A., Marto, J. A., Look, T. A., Arthur, J. S. C., Eck, M. J., & Gray, N. S. (2015). Development of selective covalent janus kinase 3 inhibitors. Journal of Medicinal Chemistry, 58(16), 6589–6606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Casimiro-Garcia, A., Trujillo, J. I., Vajdos, F., Juba, B., Banker, M. E., Aulabaugh, A., Balbo, P., Bauman, J., Chrencik, J., Coe, J. W., Czerwinski, R., Dowty, M., Knafels, J. D., Kwon, S., Leung, L., Liang, S., Robinson, R. P., Telliez, J.-B., Unwalla, R., … Thorarensen, A. (2018). Identification of cyanamide-based janus kinase 3 (JAK3) covalent inhibitors. Journal of Medicinal Chemistry, 61(23), 10665–10699.

    Article  CAS  PubMed  Google Scholar 

  63. Forster, M., Chaikuad, A., Dimitrov, T., Doring, E., Holstein, J., Berger, B. T., Gehringer, M., Ghoreschi, K., Muller, S., Knapp, S., & Laufer, S. A. (2018). Development, optimization, and structure-activity relationships of covalent-reversible JAK3 inhibitors based on a tricyclic Imidazo[5,4- d]pyrrolo[2,3- b]pyridine scaffold. Journal of Medicinal Chemistry, 61(12), 5350–5366.

    Article  CAS  PubMed  Google Scholar 

  64. Telliez, J.-B., Dowty, M. E., Wang, L., Jussif, J., Lin, T., Li, L., Moy, E., Balbo, P., Li, W., Zhao, Y., Crouse, K., Dickinson, C., Symanowicz, P., Hegen, M., Banker, M. E., Vincent, F., Unwalla, R., Liang, S., Gilbert, A. M., … Thorarensen, A. (2016). Discovery of a JAK3-selective inhibitor: Functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chemical Biology, 11(12), 3442–3451.

    Article  CAS  PubMed  Google Scholar 

  65. Thorarensen, A., Dowty, M. E., Banker, M. E., Juba, B., Jussif, J., Lin, T., Vincent, F., Czerwinski, R. M., Casimiro-Garcia, A., Unwalla, R., Trujillo, J. I., Liang, S., Balbo, P., Che, Y., Gilbert, A. M., Brown, M. F., Hayward, M., Montgomery, J., Leung, L., … Telliez, J. B. (2017). Design of a janus kinase 3 (JAK3) specific inhibitor 1-((2S,5R)-5-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop -2-en-1-one (PF-06651600) allowing for the interrogation of JAK3 signaling in humans. Journal of Medicinal Chemistry, 60(5), 1971–1993.

    Article  CAS  PubMed  Google Scholar 

  66. Xiao, T., Xiao, Y., Wang, W., Tang, Y. Y., Xiao, Z., & Su, M. (2020). Targeting EphA2 in cancer. Journal of Hematology & Oncology, 13(1), 114.

    Article  Google Scholar 

  67. Singh, D. R., Kanvinde, P., King, C., Pasquale, E. B., & Hristova, K. (2018). The EphA2 receptor is activated through induction of distinct, ligand-dependent oligomeric structures. Communication Biology, 1, 15.

    Article  Google Scholar 

  68. Schapira, A. H., & Jenner, P. (2011). Etiology and pathogenesis of Parkinson’s disease. Movement Disorders, 26(6), 1049–55.

    Article  PubMed  Google Scholar 

  69. Jiang, L., Li, X., Wang, S., Yuan, Z., & Cheng, J. (2022). The role and regulatory mechanism of m(6)A methylation in the nervous system. Frontiers in Genetics, 13, 962774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. You, S., Su, X., Ying, J., Li, S., Qu, Y., & Mu, D. (2022). Research progress on the role of RNA m6A modification in glial cells in the regulation of neurological diseases. Biomolecules, 12(8), 1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lei, C., & Wang, Q. (2022). The progression of N6-methyladenosine study and its role in neuropsychiatric disorders. International Journal of Molecular Sciences, 23(11), 5922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Han, M., Liu, Z., Xu, Y., Liu, X., Wang, D., Li, F., Wang, Y., & Bi, J. (2020). Abnormality of m6A mRNA methylation is involved in Alzheimer’s disease. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2020.00098

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kong, C. S., Kim, J. A., Yoon, N. Y., & Kim, S. K. (2009). Induction of apoptosis by phloroglucinol derivative from Ecklonia Cava in MCF-7 human breast cancer cells. Food and Chemical Toxicology, 47(7), 1653–8.

    Article  CAS  PubMed  Google Scholar 

  74. Moon, H. E., Islam, N., Ahn, B. R., Chowdhury, S. S., Sohn, H. S., Jung, H. A., & Choi, J. S. (2011). Protein tyrosine phosphatase 1B and alpha-glucosidase inhibitory phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Bioscience, Biotechnology, and Biochemistry, 75(8), 1472–80.

    Article  CAS  PubMed  Google Scholar 

  75. Ryu, B., Ahn, B. N., Kang, K. H., Kim, Y. S., Li, Y. X., Kong, C. S., Kim, S. K., & Kim, D. G. (2015). Dioxinodehydroeckol protects human keratinocyte cells from UVB-induced apoptosis modulated by related genes Bax/Bcl-2 and caspase pathway. Journal of Photochemistry and Photobiology B: Biology, 153, 352–7.

    Article  CAS  PubMed  Google Scholar 

  76. Kim, S. K., & Kong, C. S. (2010). Anti-adipogenic effect of dioxinodehydroeckol via AMPK activation in 3T3-L1 adipocytes. Chemico-Biological Interactions, 186(1), 24–9.

    Article  CAS  PubMed  Google Scholar 

  77. Ahn, B. N., Karadeniz, F., Kong, C. S., Nam, K. H., Jang, M. S., Seo, Y., & Kim, H. S. (2016). Dioxinodehydroeckol enhances the differentiation of osteoblasts by regulating the expression of phospho-smad1/5/8. Marine Drugs, 14(9), 168.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lee, M. S., Yoon, H. D., Kim, J. I., Choi, J. S., Byun, D. S., & Kim, H. R. (2012). Dioxinodehydroeckol inhibits melanin synthesis through PI3K/Akt signalling pathway in alpha-melanocyte-stimulating hormone-treated B16F10 cells. Experimental Dermatology, 21(6), 471–3.

    Article  CAS  PubMed  Google Scholar 

  79. Bak, S. S., Ahn, B. N., Kim, J. A., Shin, S. H., Kim, J. C., Kim, M. K., Sung, Y. K., & Kim, S. K. (2013). Ecklonia cava promotes hair growth. Clinical and Experimental Dermatology, 38(8), 904–10.

    Article  CAS  PubMed  Google Scholar 

  80. Eom, S. H., Lee, S. H., Yoon, N. Y., Jung, W. K., Jeon, Y. J., Kim, S. K., Lee, M. S., & Kim, Y. M. (2012). alpha-Glucosidase- and alpha-amylase-inhibitory activities of phlorotannins from Eisenia bicyclis. Journal of the Science of Food and Agriculture, 92(10), 2084–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mr. Muhammad Nasir Iqbal for providing the simulation facility and Mr. Nobendu Mukherjee for analyzing the MD results and assisting in article formatting.

Funding

Not received.

Author information

Authors and Affiliations

Authors

Contributions

FA and GS helped in writing the manuscript and idea generation; PS, BS, HS, and ST helped in writing the manuscript; MMR, MZA, HMB, and MK helped in revision and editing of the manuscript.

Corresponding author

Correspondence to Faizan Ahmad.

Ethics declarations

Conflict of interest

The authors proclaim no competing interests.

Ethical Approval

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Sachdeva, P., Sachdeva, B. et al. Dioxinodehydroeckol: A Potential Neuroprotective Marine Compound Identified by In Silico Screening for the Treatment and Management of Multiple Brain Disorders. Mol Biotechnol 66, 663–686 (2024). https://doi.org/10.1007/s12033-022-00629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00629-3

Keywords

Navigation