Skip to main content
Log in

Effects of Individual and Combined Fermentation Factors on Antimicrobial Activity of Nisin by Lactococcus lactis ATCC 11454

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

There is an increasing demand for natural food preservatives due to consumers’ concern on the negative effects of chemical preservatives in food products. Nisin (bacteriocin) is an effective food biopreservative that has been approved globally. However, its low yield proves to be a limiting factor and must be addressed to meet the increasingly high demand from the food industry. The present work thus investigated the effects of individual and combined fermentation factors on Lactococcus lactis ATCC 11454 growth and nisin activity using the one-factor-at-a-time (OFAT) method. The level of each factor that gave the highest nisin production was then selected and combined to further improve its activity. The best combined conditions for highest cell growth and nisin activity were 30 °C, pH 6.0, and mild agitation with the addition of 1.0% w/v glucose, 1.0% w/v skim milk, and 0.5% v/v Tween 20. This increased nisin production by 22.7% as compared to control (basic condition). The present work provided critical information on the relationship between fermentation conditions, growth, and nisin activity of L. lactis ATCC 11454 that could be explored to understand the potential and limitation of the strain. This fermentation strategy can also serve as a benchmark to further enhance the production of bacteriocin or other biopreservative compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Delesa, D. A. (2017). Bacteriocin as an advanced technology in food industry. International Journal of Advanced Research in Biological Sciences, 4(12), 178–190.

    Article  CAS  Google Scholar 

  2. Benítez-Chao, D. F., León-Buitimea, A., Lerma-Escalera, J. A., & Morones-Ramírez, J. R. (2021). Bacteriocins: An overview of antimicrobial, toxicity, and biosafety assessment by in vivo models. Frontiers in Microbiology, 12, 1–18.

    Article  Google Scholar 

  3. Gurumurthy, D. M., Charanraj, T. P., Faniband, B., Tallur, P. N., Bagewadi, Z. K., Neelagund, S. E., & Mulla, S. I. (2020). Cyanoxanthomycin, a bacterial antimicrobial compound extracted from Thermophilic Geobacillus sp. Iso5. Jordan Journal of Biological Sciences, 13, 725–729.

    CAS  Google Scholar 

  4. Soliman, M. O., Suleiman, W. B., Roushdy, M. M., Elbatrawy, E. N., & Gad, A. M. (2022). Characterization of some bacterial strains isolated from the Egyptian eastern and northern coastlines with antimicrobial activity of Bacillus zhangzhouensis OMER4. Acta Oceanologica Sinica, 41(3), 86–93.

    Article  CAS  Google Scholar 

  5. Tsadila, C., Nikolaidis, M., Dimitriou, T. G., Kafantaris, I., Amoutzias, G. D., Pournaras, S., & Mossialos, D. (2021). Antibacterial activity and characterization of bacteria isolated from diverse types of greek honey against nosocomial and foodborne pathogens. Applied Sciences, 11, 13.

    Article  Google Scholar 

  6. Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M., DarbEmamie, A., Ghanavati, R., & Kakanj, M. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1), 1–40.

    Article  Google Scholar 

  7. Zacharof, M. P., & Lovitt, R. W. (2012). Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia, 2, 50–56.

    Article  CAS  Google Scholar 

  8. Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. (2018). Functions and emerging applications of bacteriocins. Current Opinion in Biotechnology, 49, 23–28.

    Article  CAS  PubMed  Google Scholar 

  9. Silva, C. C., Silva, S. P., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology, 9, 594.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. B., Gaudreau, H., Bédard, F., Biron, E., Drider, D., & Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiology Reviews, 45(1), 1–24.

    Article  CAS  Google Scholar 

  11. Agriopoulou, S., Stamatelopoulou, E., Sachadyn-Król, M., & Varzakas, T. (2020). Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms, 8(6), 1–23.

    Article  Google Scholar 

  12. Hernández-Aquino, S., Miranda-Romero, L. A., Fujikawa, H., de Jesús Maldonado-Simán, E., & Alarcón-Zuñiga, B. (2019). Antibacterial activity of lactic acid bacteria to improve shelf life of raw meat. Biocontrol Science, 24(4), 185–192.

    Article  PubMed  Google Scholar 

  13. Suganthi, V., Selvarajan, E., Subathra Devi, C., & Mohanasrinivasan, V. (2012). Lantibiotic nisin: Natural preservative from Lactococcus lactis. International Research Journal of Pharmacy, 3(1), 13–19.

    CAS  Google Scholar 

  14. Özel, B., Ömer, Ş, Akçelik, M., & Saris, P. E. J. (2018). Innovative approaches to nisin production. Applied Microbiology and Biotechnology, 102, 6299–6307.

    Article  PubMed  Google Scholar 

  15. Juturu, V., & Wu, J. C. (2018). Microbial production of bacteriocins: Latest research development and applications. Biotechnology Advances, 36(8), 2187–2200.

    Article  CAS  PubMed  Google Scholar 

  16. Aarti, C., Khusro, A., Arasu, M. V., Agastian, P., & Al-Dhabi, N. A. (2016). Biological potency and characterization of antibacterial substances produced by Lactobacillus pentosus isolated from Hentak, a fermented fish product of North-East India. Springerplus, 5, 1743.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Araujo, S. C., Ramos, M. R. M. F., do Espírito Santo, E. L., de Menezes, L. H. S., de Carvalho, M. S., Tavares, I. M. D. C., Franco, M., & de Oliveira, J. R. (2022). Optimization of lipase production by Penicillium roqueforti ATCC 10110 through solid-state fermentation using agro-industrial residue based on a univariate analysis. Preparative Biochemistry & Biotechnology, 52(3), 325–330.

    Article  CAS  Google Scholar 

  18. Kheiralla, Z. H., El-Gendy, N. S., Ahmed, H. A., Shaltout, T. H., & Hussein, M. M. (2018). One-factor-at-a-time (OFAT) optimization of hemicellulases production from Fusarium moniliforme in submerged fermentation. Energy Sources A, 40(15), 1877–1885.

    Article  CAS  Google Scholar 

  19. Musa, H., Han, P. C., Kasim, F. H., Gopinath, S. C., & Ahmad, M. A. (2017). Turning oil palm empty fruit bunch waste into substrate for optimal lipase secretion on solid state fermentation by Trichoderma strains. Process biochemistry, 63, 35–41.

    Article  CAS  Google Scholar 

  20. Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., & Tripathi, C. K. M. (2017). Strategies for fermentation medium optimization: An in-depth review. Frontiers in Microbiology, 7, 2087.

    Article  PubMed  PubMed Central  Google Scholar 

  21. de Arauz, L. J., Jozala, A. F., Pinheiro, G. S., Mazzola, P. G., Junior, A. P., & Vessoni Penna, T. C. (2008). Nisin expression production from Lactococcus lactis in milk whey medium. Journal of Chemical Technology and Biotechnology, 83(3), 325–328.

    Article  Google Scholar 

  22. Karakas-Sen, A., & Karakas, E. (2018). Isolation, identification and technological properties of lactic acid bacteria from raw cow milk. Bioscience Journal, 34(2), 385–399.

    Google Scholar 

  23. Li, Q., Montalban-Lopez, M., & Kuipers, O. P. (2018). Increasing the antimicrobial activity of nisin-based lantibiotics against Gram-negative pathogens. Applied and Environmental Microbiology, 84(12), 1–15.

    Article  Google Scholar 

  24. Liu, J., Huang, R., Song, Q., Xiong, H., Ma, J., Xia, R., & Qiao, J. (2021). Combinational antibacterial activity of nisin and 3-phenyllactic acid and their co-production by engineered Lactococcus lactis. Frontiers in Bioengineering and Biotechnology, 9, 612105.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sharma, N., Garcha, S., & Singh, S. (2021). Potential of Lactococcus lactis subsp. lactis MTCC 3041 as a biopreservative. Journal of Microbiology, Biotechnology and Food Sciences, 3(2), 168–171.

    Google Scholar 

  26. Enan, G., Abdel-Shafi, S., Ouda, S., & Negm, S. (2013). Novel antibacterial activity of Lactococcus lactis subspecies lactis z11 isolated from zabady. International Journal of Biomedical Science, 9(3), 174–180.

    PubMed  PubMed Central  Google Scholar 

  27. Tafreshi, S. H., Mirdamadi, S., Norouzian, D., Khatami, S., & Sardari, S. (2010). Effect of non-nutritional factors on nisin production. African Journal of Biotechnology, 9(9), 1382–1391.

    Article  CAS  Google Scholar 

  28. Abbasiliasi, S., Tan, J. S., Tengku Ibrahim, T. A., Bashokouh, F., Ramakrishnan, N. R., Mustafa, S., & Ariff, A. B. (2017). Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. RSC Advances, 7, 29395–29420.

    Article  CAS  Google Scholar 

  29. Sidooski, T., Brandelli, A., Bertoli, S. L., de Souza, C. K., & de Carvalho, L. F. (2019). Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria: A review. Critical Reviews in Food Science and Nutrition, 59(17), 2839–2849.

    Article  CAS  PubMed  Google Scholar 

  30. Salman, M., Shahid, M., Sahar, T., Naheed, S., Arif, M., Iqbal, M., & Nazir, A. (2020). Development of regression model for bacteriocin production from local isolate of Lactobacillus acidophilus MS1 using Box-Behnken design. Biocatalysis and Agricultural Biotechnology, 24, 101542.

    Article  Google Scholar 

  31. de Arauz, L. J., Jozala, A. F., Mazzola, P. G., & Penna, T. C. V. (2009). Nisin biotechnological production and application: A review. Trends in Food Science and Technology, 20(3–4), 146–154.

    Article  Google Scholar 

  32. Telke, A. A., Ovchinnikov, K. V., Vuoristo, K. S., Mathiesen, G., Thorstensen, T., & Diep, D. B. (2019). Over 2000-fold increased production of the leaderless bacteriocin Garvicin KS by increasing gene dose and optimization of culture conditions. Frontiers in Microbiology, 10, 389.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Azizan, K. A., Baharum, S. N., & Noor, N. M. (2012). Metabolic profiling of Lactococcus lactis under different culture conditions. Molecules, 17, 8022–8036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mustafa, S. M., Chua, L. S., & El-Enshasy, H. A. (2019). Effects of agitation speed and kinetic studies on probiotication of pomegranate juice with Lactobacillus casei. Molecules, 24(13), 2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S., & Walker, B. (2018). Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express, 8(1), 1–14.

    Article  Google Scholar 

  36. Senan, S., El-aal, H. A., Dave, R., & Hassan, A. (2016). Production and stability of nisin in whey protein concentrate. LWT Food Science and Technology, 71, 125–129.

    Article  CAS  Google Scholar 

  37. Iyapparaj, P., Maruthiah, T., Ramasubburayan, R., Prakash, S., Kumar, C., Immanuel, G., & Palavesam, A. (2013). Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquatic Biosystems, 9, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Keren, T., Yarmus, M., Halevy, G., & Shapira, R. (2004). Immunodetection of the bacteriocin Lacticin RM: Analysis of the influence of temperature and Tween 80 on its expression and activity. Applied and Environmental Microbiology, 70(4), 2098–2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goyal, C., Malik, R. K., & Pradhan, D. (2018). Purification and characterization of a broad spectrum bacteriocin produced by a selected Lactococcus lactis strain 63 isolated from Indian dairy products. Journal of Food Science and Technology, 55(9), 3683–3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Q., Cui, Y., Lackeyram, D., Yuan, L., Xu, J., Wang, W., & Xu, L. (2010). Effect of cultural components on antimicrobial activity of bacteriocin produced by bacteria isolated from gut of poultry. African Journal of Microbiology Research, 4(19), 1970–1980.

    CAS  Google Scholar 

  41. Cheng, Q., Shi, X., Liu, Y., Liu, X., Dou, S., Ning, C., Liu, Z. Q., Sun, S., Chen, X., & Ren, X. (2018). Production of nisin and lactic acid from corn stover through simultaneous saccharification and fermentation. Biotechnology and Biotechnological Equipment, 32(2), 420–426.

    Article  CAS  Google Scholar 

  42. Hasan, H., Abd Rahim, M. H., Campbell, L., Carter, D., Abbas, A., & Montoya, A. (2018). Overexpression of acetyl-CoA carboxylase in Aspergillus terreus to increase lovastatin production. New Biotechnology, 44, 64–71.

    Article  CAS  PubMed  Google Scholar 

  43. Hasan, H., Abd Rahim, M. H., Campbell, L., Carter, D., Abbas, A., & Montoya, A. (2022). Increasing lovastatin production by re-routing the precursors flow of Aspergillus terreus via metabolic engineering. Molecular Biotechnology, 64(1), 90–99.

    Article  CAS  PubMed  Google Scholar 

  44. Pessione, E. (2012). Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Frontiers in Cellular and Infection Microbiology, 2, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Costas Malvido, M., Alonso González, E., & Pérez Guerra, N. (2016). Nisin production in realkalized fed-batch cultures in whey with feeding with lactose-or glucose-containing substrates. Applied Microbiology and Biotechnology, 100(18), 7899–7908.

    Article  CAS  PubMed  Google Scholar 

  46. López, R. L., García, M. T., Abriouel, H., Omar, N. B., Grande, M. J., Martínez-Cañamero, M., & Gálvez, A. (2007). Semi-preparative scale purification of enterococcal bacteriocin enterocin EJ97, and evaluation of substrates for its production. Journal of Industrial Microbiology and Biotechnology, 34, 779–785.

    Article  PubMed  Google Scholar 

  47. Abdul Khalil, K., Mustafa, S., Mohammad, R., Bin Ariff, A., Shaari, Y., Abdul Manap, Y., Ahmad, S. A., & Dahalan, F. A. (2014). Optimization of milk-based medium for efficient cultivation of Bifidobacterium pseudocatenulatum G4 using face-centered central composite-response surface methodology. BioMed Research International, 2014, 787989.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dussault, D., Vu, K. D., & Lacroix, M. (2016). Enhancement of nisin production by Lactococcus lactis subsp. lactis. Probiotics and Antimicrobial Proteins, 8(3), 170–175.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial contribution from Universiti Putra Malaysia (UPM) for financially supporting the present work through the Young Putra Initiative grant scheme (Grant No.: GP-IPM/2017/9568700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan Hasan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Rasid, N.H., Abdul Halid, N., Song, A.AL. et al. Effects of Individual and Combined Fermentation Factors on Antimicrobial Activity of Nisin by Lactococcus lactis ATCC 11454. Mol Biotechnol 65, 861–870 (2023). https://doi.org/10.1007/s12033-022-00584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00584-z

Keywords

Navigation