Skip to main content

Advertisement

Log in

CRISPR-Based Fluorescent Reporter (CBFR) Assay for Sensitive, Specific, Inexpensive, and Visual Detection of a Specific EGFR Exon 19 Deletion in NSCLC

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein receptor with intracellular tyrosine kinase activity. Mutations in the EGFR gene, including deletions in exon 19 and the mutation L858R, induce responsiveness of non-small cell lung cancer (NSCLC) to a group of drugs known as tyrosine kinase inhibitors. Here, we report the development of the CRISPR-based fluorescent reporter (CBFR) assay including a two-step strategy combining PCR amplification and Cas12a-driven cleavage to detect the delE746_A750 subtype of EGFR exon 19 deletions. Sensitivity and specificity of the CBFR assay were analyzed with different concentrations of fluorescence reporter and different amounts of PCR product. The results demonstrated that increasing the fluorescent reporter to 4 μM and the PCR product to 5 μl enhanced sensitivity. The CBFR assay could detect EGFR exon 19 deletion even with a frequency of 1% in samples. In clinical NSCLC samples, optimized CBFR assay enabled visual detection of the delE746_A750 subtype in less than 1 h. The CBFR assay provides a sensitive, specific, and simple strategy designed based on a straightforward and inexpensive process. We suggest that the CBFR assay could serve as a diagnostic approach to detect mutations, deletions, and pathogens in underequipped laboratories and promote personalized therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated during this study are included in this article and supplementary information file.

References

  1. Liu, Q., Yu, S., Zhao, W., Qin, S., Chu, Q., & Wu, K. (2018). EGFR-TKIs resistance via EGFR-independent signaling pathways. Molecular Cancer, 17, 53.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yun, C.-H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M., & Eck, M. J. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: Mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 11, 217–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brewer, M. R., Yun, C.-H., Lai, D., Lemmon, M. A., Eck, M. J., & Pao, W. (2013). Mechanism for activation of mutated epidermal growth factor receptors in lung cancer. Proceedings of the National Academy of Sciences, 110, E3595–E3604.

    CAS  Google Scholar 

  4. Harrison, P. T., Vyse, S., & Huang, P. H. (2020). Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. In Semin. Cancer. Biol., vol. 61. Elsevier. pp. 167–179.

  5. da Cunha Santos, G., Shepherd, F. A., & Tsao, M. S. (2011). EGFR mutations and lung cancer. Annual Review of Pathology: Mechanisms of Disease, 6, 49–69.

    Article  Google Scholar 

  6. Su, J., Zhong, W., Zhang, X., Huang, Y., Yan, H., Yang, J., Dong, Z., Xie, Z., Zhou, Q., Huang, X., Lu, D., Yan, W., & Wu, Y. L. (2017). Molecular characteristics and clinical outcomes of EGFR exon 19 indel subtypes to EGFR TKIs in NSCLC patients. Oncotarget, 8, 111246–111257.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu, X., Wang, P., Zhang, C., & Ma, Z. (2017). Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget, 8, 50209–50220.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aran, V., & Omerovic, J. (2019). Current approaches in NSCLC targeting K-RAS and EGFR. International Journal of Molecular Sciences, 20, 5701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pao, W., & Ladanyi, M. (2007). Epidermal growth factor receptor mutation testing in lung cancer: Searching for the ideal method. Clinical Cancer Research, 13, 4954–4955.

    Article  CAS  PubMed  Google Scholar 

  10. Engelman, J. A., Mukohara, T., Zejnullahu, K., Lifshits, E., Borras, A. M., Gale, C. M., Naumov, G. N., Yeap, B. Y., Jarrell, E., Sun, J., Tracy, S., Zhao, X., Heymach, J. V., Johnson, B. E., Cantley, L. C., & Janne, P. A. (2006). Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. The Journal of Clinical Investigation, 116, 2695–2706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bulbul, A., Leal, A., & Husain, H. (2020). Applications of cell-free circulating tumor DNA detection in EGFR mutant lung cancer. Journal of Thoracic Disease, 12, 2877–2882.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang, P., Wu, X., Tang, M., Nie, X., & Li, L. (2019). Detection of EGFR gene mutation status from pleural effusions and other body fluid specimens in patients with lung adenocarcinoma. Thoracic Cancer, 10, 2218–2224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang, X. W., Liu, W., Zhu, X. Y., & Xu, X. X. (2019). Evaluation of EGFR mutations in NSCLC with highly sensitive droplet digital PCR assays. Molecular Medicine Reports, 20, 593–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, Y., Li, S., Wang, J., & Liu, G. (2019). CRISPR/Cas systems towards next-generation biosensing. Trends in Biotechnology, 37, 730–743.

    Article  PubMed  Google Scholar 

  15. Pickar-Oliver, A., & Gersbach, C. A. (2019). The next generation of CRISPR-Cas technologies and applications. Nature Reviews Molecular Cell Biology, 20, 490–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., & Doudna, J. A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360, 436–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gootenberg, J. S., Abudayyeh, O. O., Lee, J. W., Essletzbichler, P., Dy, A. J., Joung, J., Verdine, V., Donghia, N., Daringer, N. M., Freije, C. A., Myhrvold, C., Bhattacharyya, R. P., Livny, J., Regev, A., Koonin, E. V., Hung, D. T., Sabeti, P. C., Collins, J. J., & Zhang, F. (2017). Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 356, 438–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, S. Y., Cheng, Q. X., Wang, J. M., Li, X. Y., Zhang, Z. L., Gao, S., Cao, R. B., Zhao, G. P., & Wang, J. (2018). CRISPR-Cas12a-assisted nucleic acid detection. Cell. Discov., 4, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Harrington, L. B., Burstein, D., Chen, J. S., Paez-Espino, D., Ma, E., Witte, I. P., Cofsky, J. C., Kyrpides, N. C., Banfield, J. F., & Doudna, J. A. (2018). Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 362, 839–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Dongen, J. E., Berendsen, J. T. W., Steenbergen, R. D. M., Wolthuis, R. M. F., Eijkel, J. C. T., & Segerink, L. I. (2020). Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities. Biosensors & Bioelectronics, 166, 112445.

    Article  Google Scholar 

  21. Jia, F., Li, X., Zhang, C., & Tang, X. (2020). The expanded development and application of CRISPR system for sensitive nucleotide detection. Protein & Cell, 11, 624–629.

    Article  Google Scholar 

  22. Yuan, C., Tian, T., Sun, J., Hu, M., Wang, X., Xiong, E., Cheng, M., Bao, Y., Lin, W., Jiang, J., Yang, C., Chen, Q., Zhang, H., Wang, H., Wang, X., Deng, X., Liao, X., Liu, Y., Wang, Z., … Zhou, X. (2020). Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system. Analytical Chemistry, 92, 4029–4037.

    Article  CAS  PubMed  Google Scholar 

  23. Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13, 134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Owczarzy, R., Tataurov, A. V., Wu, Y., Manthey, J. A., McQuisten, K. A., Almabrazi, H. G., Pedersen, K. F., Lin, Y., Garretson, J., McEntaggart, N. O., Sailor, C. A., Dawson, R. B., & Peek, A. S. (2008). IDT SciTools: A suite for analysis and design of nucleic acid oligomers. Nucleic Acids Research, 36, W163-169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bae, S., Park, J., & Kim, J. S. (2014). Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30, 1473–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Labun, K., Montague, T. G., Krause, M., Torres Cleuren, Y. N., Tjeldnes, H., & Valen, E. (2019). CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research, 47, W171–W174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29, 308–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, C. Y., Yang, J. C., & Yang, P. C. (2020). Precision management of advanced non-small cell lung cancer. Annual Review of Medicine, 71, 117–136.

    Article  CAS  PubMed  Google Scholar 

  29. Kobayashi, Y., & Mitsudomi, T. (2016). Not all epidermal growth factor receptor mutations in lung cancer are created equal: Perspectives for individualized treatment strategy. Cancer. science., 107, 1179–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Linardou, H., Dahabreh, I. J., Bafaloukos, D., Kosmidis, P., & Murray, S. (2009). Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nature Reviews. Clinical Oncology, 6, 352–366.

    Article  CAS  PubMed  Google Scholar 

  31. Kwapisz, D. (2017). The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Annals in Translational Medicine, 5, 3.

    Article  Google Scholar 

  32. Jensen, S. G., Epistolio, S., Madsen, C. L., Kyneb, M. H., Riva, A., Paganotti, A., Barizzi, J., Petersen, R. K., Borgesen, M., Molinari, F., Boldorini, R., Lorenzen, J., Sorensen, E., Christensen, U. B., Hogdall, E., & Frattini, M. (2021). A new sensitive and fast assay for the detection of EGFR mutations in liquid biopsies. PLoS ONE, 16, e0253687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Puig, H., Lee, R. A., Najjar, D., Tan, X., Soeknsen, L. R., Angenent-Mari, N. M., Donghia, N. M., Weckman, N. E., Ory, A., Ng, C. F., Nguyen, P. Q., Mao, A. S., Ferrante, T. C., Lansberry, G., Sallum, H., Niemi, J., & Collins, J. J. (2021). Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Science Advances, 7, 2944.

    Article  Google Scholar 

  34. Tsou, J. H., Leng, Q., & Jiang, F. (2020). A CRISPR test for rapidly and sensitively detecting circulating EGFR mutations. Diagnostics (Basel)., 10, 114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, M., Zhang, C., Hu, Z., Li, Z., Li, M., Wu, L., Zhou, M., & Liang, D. (2021). CRISPR/Cas12a-based ultrasensitive and rapid detection of JAK2 V617F somatic mutation in myeloproliferative neoplasms. Biosensors (Basel)., 11, 247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F., & Collins, J. J. (2021). CRISPR-based diagnostics. Nat. BioMedical Engineering, 5, 643–656.

    CAS  Google Scholar 

  37. Thress, K. S., Brant, R., Carr, T. H., Dearden, S., Jenkins, S., Brown, H., Hammett, T., Cantarini, M., & Barrett, J. C. (2015). EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer, 90, 509–515.

    Article  PubMed  Google Scholar 

  38. Angulo, B., Conde, E., Suarez-Gauthier, A., Plaza, C., Martinez, R., Redondo, P., Izquierdo, E., Rubio-Viqueira, B., Paz-Ares, L., Hidalgo, M., & Lopez-Rios, F. (2012). A comparison of EGFR mutation testing methods in lung carcinoma: Direct sequencing, real-time PCR and immunohistochemistry. PLoS ONE, 7, e43842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, Y., Xu, J., Zhang, L., Song, Y., Wen, W., Lu, J., Zhao, Z., Kong, W., Liu, W., Guo, A., Santarpia, M., Yamada, T., Cai, X., & Yu, Z. (2022). A multicenter-retrospective study of non-small-cell lung carcinoma harboring uncommon epidermal growth factor receptor (EGFR) mutations: Different subtypes of EGFR exon 19 deletion-insertions exhibit the clinical characteristics and prognosis of non-small cell lung carcinoma. Translational Lung Cancer Research, 11, 238–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, C., Jiang, T., Li, J., Wang, Y., Su, C., Chen, X., Ren, S., Li, X., & Zhou, C. (2020). The impact of EGFR exon 19 deletion subtypes on clinical outcomes in non-small cell lung cancer. Transl. Lung. Cancer. Res., 9, 1149–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang, Y. H., Hsu, K. H., Tseng, J. S., Chen, K. C., Hsu, C. H., Su, K. Y., Chen, J. J. W., Chen, H. W., Yu, S. L., Yang, T. Y., & Chang, G. C. (2018). The association of acquired T790M mutation with clinical characteristics after resistance to first-line epidermal growth factor receptor tyrosine kinase inhibitor in lung adenocarcinoma. Cancer Research and Treatment, 50, 1294–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express great appreciation to Medical Genetics Department at Tehran University of Medical Sciences for their assistance as well as the staff of Cancer Research Center of Imam Khomeini Hospital for the provision of non-small cell lung cancer (NSCLC) samples.

Funding

This study was supported by the Tehran University of Medical Sciences 98-3-101-45502.

Author information

Authors and Affiliations

Authors

Contributions

PS and MHM designed the study. GSS and KS collected the samples, and reviewed cases. PS, GSS, and KS performed the experiments. PS and MM analyzed the data statistically. PS, MM, and MHM interpreted the results. PS and MM wrote the manuscript. MT and MHM revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Hossein Modarressi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

This study was approved by the Ethics Committee of the Tehran University of Medical Sciences (No. IR.TUMS.MEDICINE.REC.1398.421). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

Participants signed informed consent regarding publishing their data.

Research Resource Identifiers (RRID)

Software: ChromasPro RRID:SCR_000229. Database: Primer-BLAST RRID:SCR_003095. Web Application: CHOPCHOP RRID:SCR_015723.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2155 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehipour, P., Mahdiannasser, M., Sedaghat Shayegan, G. et al. CRISPR-Based Fluorescent Reporter (CBFR) Assay for Sensitive, Specific, Inexpensive, and Visual Detection of a Specific EGFR Exon 19 Deletion in NSCLC. Mol Biotechnol 65, 807–815 (2023). https://doi.org/10.1007/s12033-022-00576-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00576-z

Keywords

Navigation