Skip to main content
Log in

Fusion of Oligopeptide to the C Terminus of α-Glucuronidase from Thermotoga maritima Improves the Catalytic Efficiency for Hemicellulose Biotransformation

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Fusion protein combined the oligopeptide (HQAFFHA) with the C terminus of α-glucuronidase from Thermotoga maritima was produced in E. coli and purified for characterization and applications of glucuronic and glucaric acid production. The fusion protein with oligopeptide exhibited a 2.97-fold higher specific activity than individual protein. Their catalytic efficiency kcat/Km and kcat increased from 469.3 ± 2.6 s−1 (g mL−1)−1 and 62.4 ± 0.9 s−1 to 2209.5 ± 26.3 s−1 (g mL−1)−1 and 293.9 ± 4.9 s−1, respectively. Fusion protein had similar temperature and pH profiles to those without oligopeptide, but the thermal stability decreases and the pH stability shifts to alkaline. Using beech xylan hydrolysate as a substrate, the glucuronic acid yield of fusion enzyme increased by 9.94% compared with its parent at 65 °C pH 8.5 for 10 h, and can hydrolyze corn cob xylan with xylanase to obtain glucuronic acid, and can be combined with uronate dehydrogenase to obtain high-added value glucaric acid. Homologous modeling analysis revealed the factors contributing to the high catalytic efficiency of fusion enzyme. These results show that the peptide fusion strategy described here may be useful for improving the catalytic efficiency and stability of other industrial enzymes, and has great potential for producing high value-added products from agricultural waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang, H. S. (1990). Study on the hemicellulose and its structure. Guangzhou Chemistry, 1, 57–66.

    Google Scholar 

  2. Zhu, Y. P., Li, X. T., Sun, B. G., Song, H. L., Li, E., & Song, H. X. (2012). Properties of an alkaline-tolerant, thermostable xylanase from streptomyces chartreusis L1105, suitable for xylooligosaccharide production. Journal of Food Science, 77, C506–C511.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, H., & Sang, Q. (2015). Production and extraction optimization of xylanase and β-mannanase by Penicillium chrysogenum QML-2 and primary application in saccharification of corn cob. Biochemical Engineering Journal, 97, 101–110.

    Article  CAS  Google Scholar 

  4. Christakopoulos, P., Katapodis, P., Kalogeris, E., Kekos, D., & Skaltsa, H. (2003). Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases. International Journal of Biological Macromolecules, 31, 171–175.

    Article  CAS  PubMed  Google Scholar 

  5. Tuncer, M., & Ball, A. S. (2010). Co-operative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan. Journal of Applied Microbiology, 94, 1030–1035.

    Article  Google Scholar 

  6. Ruile, P., Winterhalter, C., & Liebl, W. (1997). Isolation and analysis of a gene encoding -glucuronidase, an enzyme with a novel primary structure involved in the breakdown of xylan. Molecular Microbiology, 23, 267–279.

    Article  CAS  PubMed  Google Scholar 

  7. Sunna, A., & Antranikian, G. (1997). Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17, 39–67.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, L. (2012). Thoughts on the domestic present condition of straw utilization. Journal of Anhui Agricultural Sciences, 40, 15853–15855.

    CAS  Google Scholar 

  9. Wu, J. L., Xue, Y., Li, H. L., Gan, L. H., Liu, J., & Long, M. N. (2014). Research progress of α-glucuronidase, an enzyme for degrading hemicellulose side-chain. Advances in New Renewable Energy, 2, 327–333.

    Google Scholar 

  10. Johnson, K. G., Silva, M. C., Mackenzie, C. R., Schneider, H., & Fontana, J. D. (1989). Microbial degradation of hemicellulosic materials. Applied Biochemistry & Biotechnology, 20–21, 245–258.

    Article  Google Scholar 

  11. Xue, Y. M., Mao, Z. G., & Shao, W. L. (2004). Expression and purification of thermostable alpha-glucuronidase from Thermotoga maritima. Chinese Journal of Biotechnology, 20, 554–560.

    CAS  PubMed  Google Scholar 

  12. Dong, Y. Y., Li, Y. X., Shen, Y. H., & Xue, Y. M. (2018). Optimization of hydrolysis conditions of xylanase and α-glucuronidase mixture for birch xylan by response surface methodology. Food Science, 39, 125–131.

    Google Scholar 

  13. Raji, O., Bth, J. A., Vuong, T. V., Larsbrink, J. O. L., & Master, E. R. (2020). The coordinated action of glucuronoyl esterase and α-glucuronidase promotes the disassembly of lignin-carbohydrate complexes. FEBS Letters, 595, 351–359.

    Article  Google Scholar 

  14. Golan, G., Shallom, D., Teplitsky, A., Zaide, G., & Shoham, G. (2004). Crystal structures of geobacillus stearothermophilus α-glucuronidase complexed with its substrate and products. Journal of Biological Chemistry, 279, 3014–3024.

    Article  CAS  PubMed  Google Scholar 

  15. Margolles-Clark, E., Saloheimo, M., Siika-Aho, M., & Penttil, M. (1996). The α-glucuronidase-encoding gene of Trichoderma reesei. Gene, 172, 171–172.

    Article  CAS  PubMed  Google Scholar 

  16. Haar, R. T., Timmermans, J. W., Slaghek, T. M., Dongen, F., Schols, H. A., & Gruppen, H. (2010). TEMPO oxidation of gelatinized potato starch results in acid resistant blocks of glucuronic acid moieties. Carbohydrate Polymers, 81, 830–838.

    Article  Google Scholar 

  17. Yan, M. A., Zhao, L. L., Liu, H. Q., & Yuan, H. (2011). Progress in the preparation of glucuronic acid by catalytic oxidative methods from starch and its derivatives. Applied Chemical Industry, 40, 1244–1247.

    CAS  Google Scholar 

  18. Kim, Y. G., Hwang, J., Choi, H., & Lee, S. (2018). Development of a column-switching HPLC-MS/MS method and clinical application for determination of ethyl glucuronide in hair in conjunction with AUDIT for detecting high-risk alcohol consumption. Pharmaceutics, 10, 84–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, C. C., Kibblewhite, R. E., Paavola, C. D., Orts, W. J., & Wagschal, K. (2016). Production of glucaric acid from hemicellulose substrate by rosettasome enzyme assemblies. Molecular Biotechnology, 58, 489–496.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, T., Xue, Y. M., Ren, F. J., & Dong, Y. Y. (2018). Antioxidant activity of xylooligosaccharides prepared from Thermotoga maritima using recombinant enzyme cocktail of β-xylanase and α-glucuronidase. Journal of Carbohydrate Chemistry, 37, 210–224.

    Article  CAS  Google Scholar 

  21. Hong, S. Y., Lee, J. S., Cho, K. M., Math, R. K., & Yun, H. D. (2007). Construction of the bifunctional enzyme cellulase-β-glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnology Letters, 29, 931–936.

    Article  CAS  PubMed  Google Scholar 

  22. Bülow, L., & Mosbach, K. (1991). Multienzyme systems obtained by gene fusion. Trends in Biotechnology, 9, 226–231.

    Article  PubMed  Google Scholar 

  23. Sørensen, H. P., & Mortensen, K. K. (2005). Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, 115, 113–128.

    Article  PubMed  Google Scholar 

  24. Makrides, S. C. (1996). Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological Reviews, 60, 512–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ling, Z., Kang, Z., Liu, Y., Liu, S., Chen, J., & Du, G. (2014). Improvement of catalytic efficiency and thermostability of recombinant streptomyces griseus trypsin by introducing artificial peptide. World Journal of Microbiology and Biotechnology, 30, 1819–1827.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, H. Q., Lu, X. Y., Liu, L., Li, J. H., Shin, H. D., Chen, R. R., Du, G. C., & Chen, J. (2013). Fusion of an oligopeptide to the N terminus of an alkaline alpha-amylase from Alkalimonas Amylolytica simultaneously improves the enzyme’s catalytic efficiency, thermal stability, and resistance to oxidation. Applied & Environmental Microbiology, 79, 3049–3058.

    Article  CAS  Google Scholar 

  27. Li, Z. Y., Xue, X. L., Zhao, H., Yang, P. L., Luo, H. Y., & Zhao, J. Q. (2014). A C-terminal proline-rich sequence simultaneously broadens the optimal temperature and ph ranges and improves the catalytic efficiency of glycosyl hydrolase family 10 ruminal xylanases. Applied and Environmental Microbiology, 80, 3426–3432.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu, W., Xing, L., Zhou, B. H., & Lin, Z. L. (2011). Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microbial Cell Factories, 10, 1–8.

    Article  Google Scholar 

  29. Xing, L., Wu, W., Zhou, B. H., & Lin, Z. L. (2011). Streamlined protein expression and purification using cleavable self-aggregating tags. Microbial Cell Factories, 10, 42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xue, Y. M., Mao, Z. G., & Shao, W. L. (2003). Expression of xylanase B gene of Thermotoga maritima in Escherichia coli. Food and Fermentation Industries, 191, 20–25.

    Google Scholar 

  31. Wu, H. W., Pei, J. J., Wu, G. G., & Shao, W. L. (2008). Overexpression of GH10 endoxylanase XynB from Thermotoga maritima in Escherichia coli by a novel vector with potential for industrial application. Enzyme Microbial Technology, 42, 230–234.

    Article  CAS  Google Scholar 

  32. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  33. Milner, Y., & Avigad, G. (1967). A copper reagent for the determination of hexuronic acids and certain ketohexoses. Carbohydrate Research, 4, 359–361.

    Article  CAS  Google Scholar 

  34. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation-constant. Journal of the American Chemical Society, 56, 658–666.

    Article  CAS  Google Scholar 

  35. He, F. L., Shen, S. W., Zeng, Y., & Liu, X. (2015). Studies on Alkali Extraction of Xylan from Corncobs and Preparation of Xylooligosaccharides by Xylanase Hydrolysis. Packaging and Food Machinery, 33, 28–33.

    CAS  Google Scholar 

  36. Li, Y. X., Xue, Y. M., Cao, Z. G., Zhou, T., & Alnadari, F. (2018). Characterization of a uronate dehydrogenase from Thermobispora bispora for production of glucaric acid from hemicellulose substrate. World Journal of Microbiology & Biotechnology, 34, 102.

    Article  CAS  Google Scholar 

  37. Melton, L. D., & Smith, B. G. (2001). Determination of the uronic acid content of plant cell walls using a colorimetric assay. Current Protocols in Food Analytical Chemistry, 1, E3.3.1-E3.3.4.

    Google Scholar 

  38. Telke, A. A., Ghatge, S. S., Kang, S. H., Thangapandian, S., Lee, K. W., Shin, H. D., Um, Y., & Kim, S. W. (2012). Construction and characterization of chimeric cellulases with enhanced catalytic activity towards insoluble cellulosic substrates. Bioresource Technology, 112, 10–17.

    Article  CAS  PubMed  Google Scholar 

  39. Kim, T. W., Chokhawala, H. A., Nadler, D., Blanch, H. W., & Clark, D. S. (2010). Binding modules alter the activity of chimeric cellulases: Effects of biomass pretreatment and enzyme source. Biotechnology and Bioengineering, 107, 601–611.

    Article  CAS  PubMed  Google Scholar 

  40. Xue, Y. M., Song, X. F., & Yu, J. J. (2009). Overexpression of β-glucosidase from Thermotoga maritima for the production of highly purified aglycone isoflavones from soy flour. World Journal of Microbiology & Biotechnology, 25, 2165–2172.

    Article  CAS  Google Scholar 

  41. Liu, X. F., Chi, J. X., Lei, W. P., & Liu, C. G. (2020). Screening of lactic acid bacteria with high bile salt hydrolase activity and studying of its influencing factors. Food and Fermentation Industries, 46, 63–68.

    Google Scholar 

  42. Merbouh, N., Thaburet, J. F., Ibert, M., Marsais, F., & Bobbitt, J. M. (2001). Facile nitroxide-mediated oxidations of D-glucose to D-glucaric acid. Carbohydrate Research, 336, 75–78.

    Article  CAS  PubMed  Google Scholar 

  43. Kiely, D. E., Chen, L., & Lin, T. H. (1994). Hydroxylated nylons based on unprotected esterified D-glucaric acid by simple condensation reactions. Journal of the American Chemical Society, 116, 571–578.

    Article  CAS  Google Scholar 

  44. Werpy, T., Petersen, G., Aden, A., Bozell, J. J., & Jones, S. (2004) Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. Synthetic Fuels 69.

  45. Zhang, Q., Wan, Z., Yu, I. K. M., & Tsang, D. C. W. (2021). Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: A critical review. Journal of Cleaner Production, 312, 127745.

    Article  CAS  Google Scholar 

  46. Chen, H., & Zhou, J. (2009). Prediction-methods researqch of protein structure based on homologous modelling. Henan Science, 27, 1108–1110.

    Google Scholar 

  47. Bi, Y. F., Xie, G. Q., Gao, R. J., Lu, J., & Cao, S. G. (2007). Effect of specific hydrogen bond on activity and thermostability of hyperthermophilic esterase APE1547. Chemical Journal of Chinese Universities, 28, 1914–1916.

    CAS  Google Scholar 

Download references

Funding

This work was supported by grants from “National Key Research and Development Project” of China (Grant No. 2019YFA0706900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yemin Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Xue, Y., Xue, M. et al. Fusion of Oligopeptide to the C Terminus of α-Glucuronidase from Thermotoga maritima Improves the Catalytic Efficiency for Hemicellulose Biotransformation. Mol Biotechnol 65, 741–751 (2023). https://doi.org/10.1007/s12033-022-00569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00569-y

Keywords

Navigation