Skip to main content
Log in

Sequence Engineering of an Aspergillus niger Tannase to Produce in Pichia pastoris a Single-Chain Enzyme with High Specific Activity

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Tannin acyl hydrolases or tannases (E.C.3.1.1.20) are enzymes that hydrolyze the ester bond of tannins to produce gallic acid and glucose. We engineered the Aspergillus niger GH1 tannase sequence and Pichia pastoris strains to produce and secrete the enzyme as a single-chain protein. The recombinant tannase was N-glycosylated, had a molecular mass after N-deglycosylation of 65.4 kDa, and showed activity over broad pH and temperature ranges, with optimum pH and temperature of 5.0 and 20 °C. Furthermore, the single-chain tannase had an 11-fold increased specific activity in comparison to the double-chain A. niger GH1 tannase, which was also produced in P. pastoris. Structural analysis suggested that the high specific activity may be due to the presence of a flexible loop in the lid domain, which can control and drive the substrate to the active site. In contrast, the low specific activity of the double-chain tannase may be due to the presence of a disordered and flexible loop that could hinder the substrate’s access to the binding site. Based on its biochemical properties, high specific activity, and the possibility of its production in P. pastoris, the tannase described could be used in food and beverage processing at low and medium temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Belmares, R., Contreras-Esquivel, J. C., Rodríguez-Herrera, R., Ramírez, A. C., & Aguilar, C. N. (2004). Microbial production of tannase: An enzyme with potential use in food industry. LWT Food Science and Technology, 37, 857–864.

    CAS  Google Scholar 

  2. Govindarajan, R. K., Revathi, S., Rameshkumar, N., Krishnan, M., & Kayalvizhi, N. (2016). Microbial tannase: Current perspectives and biotechnological advances. Biocatalysis and Agricultural Biotechnology, 6, 168–175.

    Google Scholar 

  3. Li, J., Xiao, Q., Huang, Y., Ni, H., Wu, C., & Xiao, A. (2017). Tannase application in secondary enzymatic processing of inferior Tieguanyin oolong tea. Electronic Journal of Biotechnology, 28, 87–94.

    CAS  Google Scholar 

  4. Copeland, R. A. (2000). Enzymes: A practical introduction to structure, mechanism, and data analysis. Wiley.

    Google Scholar 

  5. Woodley, J. M. (2013). Protein engineering of enzymes for process applications. Current Opinion in Chemical Biology, 17, 310–316.

    CAS  PubMed  Google Scholar 

  6. Fuentes-Garibay, J. A., Aguilar, C. N., Rodríguez-Herrera, R., Guerrero-Olazarán, M., & Viader-Salvadó, J. M. (2015). Tannase sequence from a xerophilic Aspergillus niger strain and production of the enzyme in Pichia pastoris. Molecular Biotechnology, 57, 439–447.

    CAS  PubMed  Google Scholar 

  7. Cruz-Hernández, M., Contreras-Esquivel, F. C., Lara, D., Rodríguez, R., & Aguilar, C. N. (2005). Isolation and evaluation of tannin-degrading fungal strains from the Mexican desert. Zeitschrift für Naturforschung, 60, 844–848.

    PubMed  Google Scholar 

  8. Karbalaei, M., Rezaee, S. A., & Frsiani, H. (2020). Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology, 235(9), 1–15.

    Google Scholar 

  9. Renovato, J., Gutiérrez-Sánchez, G., Rodríguez-Durán, L. V., Bergman, C., Rodríguez, R., & Aguilar, C. N. (2011). Differential properties of Aspergillus niger tannase produced under solid-state and submerged fermentations. Applied Biochemistry and Biotechnology, 165, 382–395.

    CAS  PubMed  Google Scholar 

  10. Heckman, K. L., & Pease, L. R. (2007). Gene splicing and mutagenesis by PCR-driven overlap extension. Nature Protocols, 2, 924–932.

    CAS  PubMed  Google Scholar 

  11. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  12. Green, M. R., & Sambrook, J. (2012). Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press.

  13. Caballero-Pérez, A., Viader-Salvadó, J. M., Herrera-Estala, A. L., Fuentes-Garibay, J. A., & Guerrero-Olazarán, M. (2021). Buried Kex2 sites in glargine precursor aggregates prevent its intracellular processing in Pichia pastoris MutS strains and the effect of methanol-feeding strategy and induction temperature on glargine precursor production parameters. Applied Biochemistry and Biotechnology, 193(9), 2806–2829.

    PubMed  Google Scholar 

  14. Viader-Salvadó, J. M., Fuentes-Garibay, J. A., Castillo-Galván, M., Iracheta-Cárdenas, M. M., Galán-Wong, L. J., & Guerrero-Olazarán, M. (2013). Shrimp (Litopenaeus vannamei) trypsinogen production in Pichia pastoris bioreactor cultures. Biotechnology Progress, 29(1), 11–16.

    PubMed  Google Scholar 

  15. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovoski, E., Peterson, P., Weckesser, W., Bright, J., Van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17, 261–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharma, S., Bhat, R. K., & Dawra, R. K. (1999). Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. World Journal of Microbiology and Biotechnology, 15, 673–677.

    CAS  Google Scholar 

  17. Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., & Bryant, S. H. (2009). PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Research, 37, W623–W633.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(17), 1–17.

    Google Scholar 

  19. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: And environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723.

    CAS  PubMed  Google Scholar 

  21. Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., & Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 77(9), 114–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pettersen, E. F., Goddard, T. D., Huand, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera: A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.

    CAS  PubMed  Google Scholar 

  23. Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54, 561–5637.

    Google Scholar 

  24. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutodockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 16, 2785–2791.

    Google Scholar 

  25. Harris, R., Olson, A. J., & Goodsell, D. S. (2007). Automated prediction of ligand-binding sites in proteins. Proteins, 70(4), 1506–1517.

    Google Scholar 

  26. Dong, L., McKinstry, W. J., Pan, L., Newman, J., & Ren, B. (2021). Crystal structure of fungal tannase from Aspergillus niger. Acta Crystallographica, D77, 267–277.

    Google Scholar 

  27. Tress, M. (2013). Protein tertiary structures: Prediction from amino acid sequences, in eLS. Wiley.

    Google Scholar 

  28. Suzuki, K., Hori, A., Kwamoto, K., Thangudu, R. R., Ishida, T., Igarashi, K., Samejima, M., Yamada, C., Arakawa, T., Wakagi, T., Koseki, T. K., & Fushinobu, S. (2014). Crystal and structure of a feruloyl esterase belonging to the tannase family: A disulfide bond near a catalytic triad. Proteins, 82, 2857–2867.

    CAS  PubMed  Google Scholar 

  29. McAuley, K. E., Svendsen, S., Patkar, S. A., & Wilson, K. S. (2004). Structure of a feruloyl esterase from Aspergillus niger. Acta Crystallographica, D60, 878–887.

    CAS  Google Scholar 

  30. Ren, B., Wu, M., Wang, Q., Peng, X., Wen, H., Mckinsty, W. J., & Chen, Q. (2013). Crystal structure of tannase from Lactobacillus plantarum. Journal of Molecular Biology, 425(15), 2737–2751.

    CAS  PubMed  Google Scholar 

  31. Sinha, J., Plantz, B. A., Inan, M., & Meagher, M. M. (2004). Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris: Case study with recombinant Ovine Interferon-Tau. Biotechnology and Bioengineering, 89(1), 102–112.

    Google Scholar 

  32. Salamin, K., Sriranganadane, D., Léchenne, B., Jousson, O., & Monod, M. (2010). Secretion of an endogenous subtilisin by Pichia pastoris strains GS115 and KM71. Applied Environmental Microbiology, 76(13), 4269–4276.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Charoenrat, T., Khumruaengsri, N., Promdonkoy, P., Rattanaphan, N., Eurwilaichitr, L., Tanapongpipat, S., & Roongsawang, N. (2013). Improvement of recombinant endoglucanase produced in Pichia pastoris KM71 through the use of synthetic medium for inoculum and pH control of proteolysis. Journal of Bioscience and Bioengineering, 116(2), 193–198.

    CAS  PubMed  Google Scholar 

  34. O’Callagan, J., O’Brien, M. M., McClean, K., & Dobson, A. D. W. (2002). Optimization of the expression of a Trametes versicolor laccase gene in Pichia pastoris. Journal of Industrial Microbiology and Biotechnology, 29, 55–59.

    Google Scholar 

  35. Inan, M., & Meagher, M. M. (2001). Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. Journal of Bioscience and Bioengineering, 92, 585–589.

    CAS  PubMed  Google Scholar 

  36. Mizuno, T., Shiono, Y., & Koseki, T. (2014). Biochemical characterization of Aspergillus oryzae native tannase and the recombinant enzyme expressed in Pichia pastoris. Journal of Bioscience and Bioengineering, 118(4), 392–395.

    CAS  PubMed  Google Scholar 

  37. Koseki, T., Otsuka, M., Mizuno, T., & Shiono, Y. (2017). Mutational analysis of Kex2 recognition sites and a disulfide bond in tannase from Aspergillus oryzae. Biochemical and Biophysical Research Communications, 482, 1165–1169.

    CAS  PubMed  Google Scholar 

  38. Koseki, T., Ichikawa, K., Sasaki, K., & Shiono, Y. (2018). Characterization of a novel Aspergillus oryzae tannase expressed in Pichia pastoris. Journal of Bioscience and Bioengineering, 126(5), 553–558.

    CAS  PubMed  Google Scholar 

  39. Shao, Y., Zhang, Y. H., Zhang, F., Yang, Q. M., Weng, H. F., Xiao, Q., & Xiao, A. F. (2020). Thermostable tannase from Aspergillus niger and its application in the enzymatic extraction of green tea. Molecules, 25(5), 952.

    CAS  PubMed Central  Google Scholar 

  40. Puxbaum, V., Mattanovich, D., & Gasser, B. (2015). Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Applied Microbiology and Biotechnology, 99(7), 2925–2938.

    CAS  PubMed  Google Scholar 

  41. Khan, F. I., Lan, D., Durrani, R., Huan, W., Zhao, Z., & Wang, Y. (2017). The lid domain in lipases: Structural and functional determinant of enzymatic properties. Frontiers in Bioengineering and Biotechnology, 5(16), 1–13.

    Google Scholar 

  42. Punta, M., Coggill, P. C., Eberhardt, R. Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., Clements, J., Heger, A., Holm, L., Sonnhammer, E. L., Eddy, S. R., Bateman, A., & Finn, R. D. (2012). The Pfam protein families database. Nucleic Acids Research, 40, D290–D301.

    CAS  PubMed  Google Scholar 

  43. Liu, F., Wang, B., Ye, Y., & Pan, L. (2018). High level expression and characterization of tannase tan7 using Aspergillus niger SH-2 with low-background endogenous secretory proteins as the host. Protein Expression and Purification, 144, 71–75.

    CAS  PubMed  Google Scholar 

  44. Fountoulakis, M., Juranville, J.-F., & Manneberg, M. (1992). Comparison of the Coomassie brilliant blue, bicinchoninic acid and Lowry quantitation assays, using non-glycosylated and glycosylated proteins. Journal of Biochemical and Biophysical Methods, 24, 265–274.

    CAS  PubMed  Google Scholar 

  45. Betts, M. J., & Russell, R. B. (2003). Amino acid properties and consequences of substitutions. In M. R. Barnes & I. C. Gray (Eds.), Bioinformatics for geneticists (pp. 289–316). Wiley.

    Google Scholar 

  46. Aharwar, A., & Parihar, D. K. (2021). Talamoryces verruculosus tannase inmobilization, characterization, and application in tea infusion treatment. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01162-6

    Article  Google Scholar 

  47. Lima, J. S., Cabrera, M. P., Casazza, A. A., Silva, M. F., Perego, P., Carvalho, L. B., & Converti, A. (2018). Immobilization of Aspergillus ficuum tannase in calcium alginate beads and its application in the treatment of boldo (Peumus boldus) tea. International Journal of Biological Macromolecules, 118, 1989–1994.

    PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful for Grant CN1207-20 (PAICYT) from the Universidad Autónoma de Nuevo León. We thank Glen D. Wheeler and Samira Hosseini for their stylistic suggestions in the preparation of the manuscript. D. O.-P. thanks CONACYT for her fellowship.

Author information

Authors and Affiliations

Authors

Contributions

DO-P participated in the methodology, formal analysis, investigation, data curation, preparation of the original draft, reviewing and editing of the manuscript, and visualization. JAF-G participated in the investigation, data curation, and reviewing and editing of the manuscript. MG-O participated in the conceptualization, methodology, resources, reviewing and editing of the manuscript, supervision, and project administration. JMV-S participated in the conceptualization, methodology, formal analysis, data curation, preparation of the original draft, reviewing and editing of the manuscript, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to José María Viader-Salvadó.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordaz-Pérez, D., Fuentes-Garibay, J.A., Guerrero-Olazarán, M. et al. Sequence Engineering of an Aspergillus niger Tannase to Produce in Pichia pastoris a Single-Chain Enzyme with High Specific Activity. Mol Biotechnol 64, 388–400 (2022). https://doi.org/10.1007/s12033-021-00416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00416-6

Keywords

Navigation