Skip to main content
Log in

BMP-4 Extraction from Extracellular Matrix and Analysis of Heparin-Binding Properties

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant human BMP-4 growth factor (GF) has significant commercial potential as therapeutic for regenerating bone and as cell culture supplement. However, its commercial utility has been limited as large-scale attempts to express and purify human BMP-4 GF have proved challenging. We have established a novel approach to obtain significant quantities of pure and bioactive BMP-4 GF from Chinese hamster ovary cell cultures by extracting the GF moiety from the extracellular matrix or cell pellet fraction. This approach increased yields approximately one 100-fold over BMP-4 GF purified from CM. The molecular activities of the two fractions are indistinguishable. We further analyzed binding of BMP-4 GF to the proteoglycan Heparin and showed that an N-terminal basic sequence is essential for this interaction. Taken together, these results provide novel insights into the purification, localization, and Heparin binding of human BMP-4 that have implications for its bioprocessing and biological function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rosen, V., Wozney, J. M., Wang, E. A., Cordes, P., Celeste, A., McQuaid, D., & Kurtzberg, L. (1989). Purification and molecular cloning of a novel group of BMPs and localization of BMP mRNA in developing bone. Connective Tissue Research, 20, 313–319.

    Article  CAS  Google Scholar 

  2. Lowery, J. W., & Rosen, V. (2018). Bone morphogenetic protein-based therapeutic approaches. Cold Spring Harbor Perspectives in Biology, 10, a022327.

    Article  CAS  Google Scholar 

  3. Hogan, B. L. (1996). Bone morphogenetic proteins: Multifunctional regulators of vertebrate development. Genes & Development, 10, 1580–1594.

    Article  CAS  Google Scholar 

  4. Ying, Q. L., Nichols, J., Chambers, I., & Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115, 281–292.

    Article  CAS  Google Scholar 

  5. Papadopoulos, A., Chalmantzi, V., Mikhaylichenko, O., Hyvonen, M., Stellas, D., Kanhere, A., Heath, J., Cunningham, D. L., Fotsis, T., & Murphy, C. (2020). Combined transcriptomic and phosphoproteomic analysis of BMP4 signaling in human embryonic stem cells. Stem Cell Research, 50, 102133.

    Article  CAS  Google Scholar 

  6. Lyons, R. M., Keski-Oja, J., & Moses, H. L. (1988). Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. Journal of Cell Biology, 106, 1659–1665.

    Article  CAS  Google Scholar 

  7. Wakefield, L. M., Smith, D. M., Broz, S., Jackson, M., Levinson, A. D., & Sporn, M. B. (1989). Recombinant TGF-beta 1 is synthesized as a two-component latent complex that shares some structural features with the native platelet latent TGF-beta 1 complex. Growth Factors, 1, 203–218.

    Article  CAS  Google Scholar 

  8. Sun, P. D., & Davies, D. R. (1995). The cystine-knot growth-factor superfamily. Annual Review of Biophysics and Biomolecular Structure, 24, 269–291.

    Article  CAS  Google Scholar 

  9. Hammonds, R. G., Jr., Schwall, R., Dudley, A., Berkemeier, L., Lai, C., Lee, J., Cunningham, N., Reddi, A. H., Wood, W. I., & Mason, A. J. (1991). Bone-inducing activity of mature BMP-2b produced from a hybrid BMP-2a/2b precursor. Molecular Endocrinology, 5, 149–155.

    Article  CAS  Google Scholar 

  10. Park, J., Yu, S., Yoon, J., & Baek, K. (2005). High-level expression of recombinant human bone morphogenetic protein-4 in Chinese hamster ovary cells. Journal of Microbiology & Biotechnology, 15, 1397–1401.

    CAS  Google Scholar 

  11. Swencki-Underwood, B., Mills, J. K., Vennarini, J., Boakye, K., Luo, J., Pomerantz, S., Cunningham, M. R., Farrell, F. X., Naso, M. F., & Amegadzie, B. (2008). Expression and characterization of a human BMP-7 variant with improved biochemical properties. Protein Expression and Purification, 57, 312–319.

    Article  CAS  Google Scholar 

  12. Huang, Y., Zhen, B., Lin, Y., Cai, Y., Lin, Z., Deng, C., & Zhang, Y. (2014). Expression of codon optimized human bone morphogenetic protein 4 in Pichia pastoris. Biotechnology and Applied Biochemistry, 61, 175–183.

    Article  CAS  Google Scholar 

  13. Kim, C. L., Bang, Y. L., Kim, Y. S., Jang, J. W., & Lee, G. M. (2016). Alleviation of proteolytic degradation of recombinant human bone morphogenetic protein-4 by repeated batch culture of Chinese hamster ovary cells. Process Biochemistry, 51, 1078–1084.

    Article  CAS  Google Scholar 

  14. Cha, M., Han, N., Pi, J., Jeong, Y., Baek, K., & Yoon, J. (2017). Expression and purification of biologically active human bone morphogenetic protein-4 in recombinant Chinese hamster ovary cells. Journal of Microbiology and Biotechnology, 27, 1281–1287.

    Article  CAS  Google Scholar 

  15. Kim, C. L., Jung, M. Y., Kim, Y. S., Jang, J. W., & Lee, G. M. (2018). Improving the production of recombinant human bone morphogenetic protein-4 in Chinese hamster ovary cell cultures by inhibition of undesirable endocytosis. Biotechnology and Bioengineering, 115, 2565–2575.

    Article  CAS  Google Scholar 

  16. Kim, C. L., & Lee, G. M. (2019). Improving recombinant bone morphogenetic protein-4 (BMP-4) production by autoregulatory feedback loop removal using BMP receptor-knockout CHO cell lines. Metabolic Engineering, 52, 57–67.

    Article  CAS  Google Scholar 

  17. Gieseler, G. M., Ekramzadeh, K., Nolle, V., Malysheva, S., Kempf, H., Beutel, S., Zweigerdt, R., Martin, U., Rinas, U., Scheper, T., & Pepelanova, I. (2018). Solubilization and renaturation of biologically active human bone morphogenetic protein-4 from inclusion bodies. Biotechnology Reports, 18, e00249.

    Article  Google Scholar 

  18. Klosch, B., Furst, W., Kneidinger, R., Schuller, M., Rupp, B., Banerjee, A., & Redl, H. (2005). Expression and purification of biologically active rat bone morphogenetic protein-4 produced as inclusion bodies in recombinant Escherichia coli. Biotechnology Letters, 27, 1559–1564.

    Article  CAS  Google Scholar 

  19. Ohkawara, B., Iemura, S., ten Dijke, P., & Ueno, N. (2002). Action range of BMP is defined by its N-terminal basic amino acid core. Current Biology, 12, 205–209.

    Article  CAS  Google Scholar 

  20. Ruppert, R., Hoffmann, E., & Sebald, W. (1996). Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. European Journal of Biochemistry, 237, 295–302.

    Article  CAS  Google Scholar 

  21. Choi, Y. J., Lee, J. Y., Park, J. H., Park, J. B., Suh, J. S., Choi, Y. S., Lee, S. J., Chung, C. P., & Park, Y. J. (2010). The identification of a heparin binding domain peptide from Bone morphogenetic protein-4 and its role on osteogenesis. Biomaterials, 31, 7226–7238.

    Article  CAS  Google Scholar 

  22. Rider, C. C., & Mulloy, B. (2017). Heparin, heparan sulphate and the TGF-beta cytokine superfamily. Molecules, 22, 713.

    Article  CAS  Google Scholar 

  23. Aykul, S., & Martinez-Hackert, E. (2016). Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Analytical Biochemistry, 508, 97–103.

    Article  CAS  Google Scholar 

  24. Aykul, S., & Martinez-Hackert, E. (2019). High-throughput, biosensor-based approach to examine bone morphogenetic protein (BMP)-receptor interactions. Methods in Molecular Biology, 1891, 37–49.

    Article  CAS  Google Scholar 

  25. Hammonds, R. G., & Mason, A. J. (1992). Mammalian expression of the bone morphogenetic protein-2b using bmp2a/bmp2b fusion: S. United ed, Genentech Inc.

  26. Massague, J. (1998). TGF-beta signal transduction. Annual Review of Biochemistry, 67, 753–791.

    Article  CAS  Google Scholar 

  27. von Bubnoff, A., Peiffer, D. A., Blitz, I. L., Hayata, T., Ogata, S., Zeng, Q., Trunnell, M., & Cho, K. W. (2005). Phylogenetic footprinting and genome scanning identify vertebrate BMP response elements and new target genes. Developmental Biology, 281, 210–226.

    Article  CAS  Google Scholar 

  28. Osmond, R. I., Kett, W. C., Skett, S. E., & Coombe, D. R. (2002). Protein-heparin interactions measured by BIAcore 2000 are affected by the method of heparin immobilization. Analytical Biochemistry, 310, 199–207.

    Article  CAS  Google Scholar 

  29. Nelsen, S. M., & Christian, J. L. (2009). Site-specific cleavage of BMP4 by furin, PC6, and PC7. Journal of Biological Chemistry, 284, 27157–27166.

    Article  CAS  Google Scholar 

  30. Bokhove, M., Sadat Al Hosseini, H., Saito, T., Dioguardi, E., Gegenschatz-Schmid, K., Nishimura, K., Raj, I., de Sanctis, D., Han, L., & Jovine, L. (2016). Easy mammalian expression and crystallography of maltose-binding protein-fused human proteins. Journal of Structural Biology, 194, 1–7.

    Article  CAS  Google Scholar 

  31. Baker, J. M., & Boyce, F. M. (2014). High-throughput functional screening using a homemade dual-glow luciferase assay. Journal of Visualized Experiments: JoVE. https://doi.org/10.3791/50282

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by NIH Grant R01 GM121499 to EMH.

Author information

Authors and Affiliations

Authors

Contributions

SA and JM designed, performed, and analyzed experiments; EMH designed and analyzed experiments; EMH wrote manuscript.

Corresponding author

Correspondence to Erik Martinez-Hackert.

Ethics declarations

Conflict of interest

EMH holds shares of Acceleron Pharma. EMH is a shareholder and co-founder of Advertent Biotherapeutics. SA is an employee and holds stock options of Regeneron Pharma. JM has no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals.

Informed Consent

All the authors gave consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aykul, S., Maust, J. & Martinez-Hackert, E. BMP-4 Extraction from Extracellular Matrix and Analysis of Heparin-Binding Properties. Mol Biotechnol 64, 156–170 (2022). https://doi.org/10.1007/s12033-021-00403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00403-x

Keywords

Navigation