Skip to main content

Advertisement

Log in

Protein Integrated Network Analysis to Reveal Potential Drug Targets Against Extended Drug-Resistant Mycobacterium tuberculosis XDR1219

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The reconstruction and analysis of the protein–protein interaction (PPI) network is a powerful approach to understand the complex biological and molecular functions in normal and disease states of the cell. The interactome of most organisms is largely unidentified except some model organisms. The current study focused on the construction of PPI network for the human pathogen Mycobacterium tuberculosis (MTB)-resistant strain XDR1219 using computational methods. In this work, a bioinformatics approach was employed to reveal potential drug targets. The pipeline adopted the combination of an extensive integrated network analysis that led to identify 22 key proteins involved in drug resistance, resistant metabolic pathways, virulence, pathogenesis and persistency of the infection. The MTB XDR1219 interactome consists of 11,383 non-redundant PPIs among 1499 proteins covering 38% of the entire MTB XDR1219 proteome. The overall quality of the network was assessed and topological parameters of the PPI were calculated. The predicted interactions were functionally annotated and their relevance was assessed with the functional similarity. The study attempts to present the interactome of previously unidentified MTB XDR1219 and revealed potential drug targets that can be further explored by scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang, J., Zhao, Y., Gong, W., Liu, Y., Wang, M., Huang, X., & Tan, J. (2021). EDLMFC: An ensemble deep learning framework with multi-scale features combination for ncRNA–protein interaction prediction. BMC Bioinformatics, 22, 1–19.

    CAS  Google Scholar 

  2. Zeng, M., Zhang, F., Wu, F.-X., Li, Y., Wang, J., & Li, M. (2019). Protein–protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics, 36, 1114–1120.

    Article  Google Scholar 

  3. Peng, X., Wang, J., Peng, W., Wu, F.-X., & Pan, Y. (2016). Protein–protein interactions: Detection, reliability assessment and applications. Briefings in Bioinformatics, 18, 798–819.

    Google Scholar 

  4. Verma, H., Nagar, S., Vohra, S., Pandey, S., Lal, D., Negi, R. K., Lal, R., & Rawat, C. D. (2021). Genome analyses of 174 strains of Mycobacterium tuberculosis provide insight into the evolution of drug resistance and reveal potential drug targets. Microbial Genomics, 7, mgen000542.

    Article  PubMed Central  CAS  Google Scholar 

  5. Global tuberculosis report 2020, Geneva: World Health Organization, (2020). Licence: CC BY-NC-SA 3.0 IGO.

  6. Yuan, T., Werman, J. M., & Sampson, N. S. (2021). The pursuit of mechanism of action: Uncovering drug complexity in TB drug discovery. RSC Chemical Biology, 2, 423–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Agamah, F. E., Mazandu, G. K., Hassan, R., Bope, C. D., Thomford, N. E., Ghansah, A., & Chimusa, E. R. (2020). Computational/in silico methods in drug target and lead prediction. Briefings in Bioinformatics, 21, 1663–1675.

    Article  PubMed  Google Scholar 

  8. Gupta, S. K., Osmanoglu, Ö., Srivastava, M., Bencúrová, E., & Dandekar, T. (2020). Pathogen and host-pathogen protein interactions provide a key to identify novel drug targets. In O. Wolkenhauer (Ed.), Systems medicine: Integrative, qualitative and computational approaches (Vol. 2, pp. 543–553). Academic Press.

    Google Scholar 

  9. Li, X., Li, W., Zeng, M., Zheng, R., & Li, M. (2019). Network-based methods for predicting essential genes or proteins: A survey. Briefings in Bioinformatics, 21, 566–583.

    Article  CAS  Google Scholar 

  10. Banerjee, U., Sankar, S., Singh, A., & Chandra, N. (2020). A multi-pronged computational pipeline for prioritizing drug target strategies for latent tuberculosis. Frontiers in Chemistry, 8, 1193.

    Article  Google Scholar 

  11. Zhang, Y., Zhang, X., Zhao, Z., Zheng, Y., Xiao, Z., & Li, F. (2019). Integrated bioinformatics analysis and validation revealed potential immune-regulatory miR-892b, miR-199b-5p and miR-582–5p as diagnostic biomarkers in active tuberculosis. Microbial Pathogenesis, 134, 103563.

    Article  CAS  PubMed  Google Scholar 

  12. Borham, M., Oreiby, A., El-Gedawy, A., Hegazy, Y., Hemedan, A., & Al-Gaabary, M. (2021). Abattoir survey of bovine tuberculosis in tanta, centre of the Nile delta, with in silico analysis of gene mutations and protein–protein interactions of the involved mycobacteria. Transboundary and Emerging Diseases. https://doi.org/10.1111/tbed.14001

    Article  PubMed  Google Scholar 

  13. Yu, X., Feng, J., Huang, L., Gao, H., Liu, J., Bai, S., Wu, B., & Xie, J. (2019). Molecular basis underlying host immunity subversion by Mycobacterium tuberculosis PE/PPE family molecules. DNA and Cell Biology, 38, 1178–1187.

    Article  CAS  PubMed  Google Scholar 

  14. Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., & Bork, P. (2016). The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research, 45, D362–D368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Consortium, U. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47, D506–D515.

    Article  CAS  Google Scholar 

  16. Luo, H., Lin, Y., Gao, F., Zhang, C.-T., & Zhang, R. (2014). DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Research, 42, D574–D580.

    Article  CAS  PubMed  Google Scholar 

  17. Hernández-Salmerón, J. E., & Moreno-Hagelsieb, G. (2020). Progress in quickly finding orthologs as reciprocal best hits: Comparing blast, last, diamond and MMseqs2. BMC Genomics, 21, 1–9.

    Article  CAS  Google Scholar 

  18. Gurumayum, S., Jiang, P., Hao, X., Campos, T. L., Young, N. D., Korhonen, P. K., Gasser, R. B., Bork, P., Zhao, X.-M., & He, L.-J. (2021). OGEE v3: Online GEne Essentiality database with increased coverage of organisms and human cell lines. Nucleic Acids Research, 49, D998–D1003.

    Article  CAS  PubMed  Google Scholar 

  19. Alcock, B. P., Raphenya, A. R., Lau, T. T., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.-L.V., Cheng, A. A., & Liu, S. (2020). CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 48, D517–D525.

    CAS  PubMed  Google Scholar 

  20. Uddin, R., Tariq, S. S., Azam, S. S., Wadood, A., & Moin, S. T. (2017). Identification of histone deacetylase (HDAC) as a drug target against MRSA via interolog method of protein-protein interaction prediction. European Journal of Pharmaceutical Sciences, 106, 198–211.

    Article  CAS  PubMed  Google Scholar 

  21. Mei, S., Flemington, E. K., & Zhang, K. (2018). Transferring knowledge of bacterial protein interaction networks to predict pathogen targeted human genes and immune signaling pathways: A case study on M. tuberculosis. BMC Genomics, 19, 1–21.

    Article  CAS  Google Scholar 

  22. Kohl, M., Wiese, S., & Warscheid, B. (2011). Cytoscape: Software for visualization and analysis of biological networks. In M., Hamacher, M., Eisenacher, & C. Stephan (Eds.), Data mining in proteomics. Methods in molecular biology (Methods and protocols) (Vol. 696, pp. 291–303). Humana Press.

  23. Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M. C., Rattei, T., Mende, D. R., Sunagawa, S., Kuhn, M., Jensen, L. J., von Mering, C., & Bork, P. (2015). eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research, 44, D286–D293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45, D353–D361.

    Article  CAS  PubMed  Google Scholar 

  25. Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S. C., Ester, M., & Foster, L. J. (2010). PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 26, 1608–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Assenov, Y., Ramírez, F., Schelhorn, S.-E., Lengauer, T., & Albrecht, M. (2008). Computing topological parameters of biological networks. Bioinformatics, 24, 282–284.

    Article  CAS  PubMed  Google Scholar 

  27. Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., & Lin, C.-Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8, 1–7.

    Article  Google Scholar 

  28. Bader, G. D., & Hogue, C. W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 1–27.

    Article  Google Scholar 

  29. Zhao, C., & Wang, Z. (2018). GOGO: An improved algorithm to measure the semantic similarity between gene ontology terms. Science and Reports, 8, 1–10.

    Google Scholar 

  30. Gupta, S. K., Srivastava, M., Osmanoglu, Ö., & Dandekar, T. (2020). Genome-wide inference of the Camponotus floridanus protein-protein interaction network using homologous mapping and interacting domain profile pairs. Science and Reports, 10, 1–12.

    CAS  Google Scholar 

  31. Ning, K., Ng, H. K., Srihari, S., Leong, H. W., & Nesvizhskii, A. I. (2010). Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology. BMC Bioinformatics, 11, 1–14.

    Article  CAS  Google Scholar 

  32. Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., & Sayeeda, Z. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46, D1074–D1082.

    Article  CAS  PubMed  Google Scholar 

  33. Mahajan, G., & Mande, S. C. (2017). Using structural knowledge in the protein data bank to inform the search for potential host-microbe protein interactions in sequence space: Application to Mycobacterium tuberculosis. BMC Bioinformatics, 18, 1–14.

    Article  CAS  Google Scholar 

  34. Zhou, H., Gao, S., Nguyen, N. N., Fan, M., Jin, J., Liu, B., Zhao, L., Xiong, G., Tan, M., Li, S., & Wong, L. (2014). Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions. Biology Direct, 9, 1–30.

    Article  CAS  Google Scholar 

  35. Han, Y.-C., Song, J.-M., Wang, L., Shu, C.-C., Guo, J., & Chen, L.-L. (2016). Prediction and characterization of protein-protein interaction network in Bacillus licheniformis WX-02. Science and Reports, 6, 1–11.

    CAS  Google Scholar 

  36. Shekarappa, S. B., Kandagalla, S., Gollapalli, P., Rudresh, B. B., Hanumanthappa, T., & Hanumanthappa, M. (2017). Topology of protein–protein interaction network and edge reduction co-efficiency in VEGF signaling of breast cancer. Network Modeling Analysis in Health Informatics and Bioinformatics, 6, 1–11.

    Google Scholar 

  37. Pang, E., Hao, Y., Sun, Y., & Lin, K. (2016). Differential variation patterns between hubs and bottlenecks in human protein-protein interaction networks. BMC Evolutionary Biology, 16, 1–9.

    Article  CAS  Google Scholar 

  38. Thakur, Z., Dharra, R., Saini, V., Kumar, A., & Mehta, P. K. (2017). Insights from the protein-protein interaction network analysis of Mycobacterium tuberculosis toxin-antitoxin systems. Bioinformation, 13, 380–387.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gabriele, T., Ivan, B., Fausto, S., Carlo, L., & Giovanni, S. (2017). Creating, generating and comparing random network models with NetworkRandomizer. F1000Research, 5, 1–15.

    Google Scholar 

  40. Bollobás, B. (1998). Random graphs. In Ravi Vakil (Ed.), Modern graph theory, Graduate Texts in Mathematics (Vol 184, pp. 215–252). New York, NY: Springer.

  41. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.

    Article  CAS  PubMed  Google Scholar 

  42. Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.

    Article  PubMed  Google Scholar 

  43. Li, G., Li, M., Wang, J., Wu, J., Wu, F.-X., & Pan, Y. (2016). Predicting essential proteins based on subcellular localization, orthology and PPI networks. BMC Bioinformatics, 17, 571–581.

    Article  Google Scholar 

  44. Miryala, S. K., Anbarasu, A., & Ramaiah, S. (2021). Gene interaction network approach to elucidate the multidrug resistance mechanisms in the pathogenic bacterial strain Proteus mirabilis. Journal of Cellular Physiology, 236, 468–479.

    Article  CAS  PubMed  Google Scholar 

  45. Yu, H., Kim, P. M., Sprecher, E., Trifonov, V., & Gerstein, M. (2007). The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics. PLoS Computational Biology, 3, e59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Radusky, L., Defelipe, L. A., Lanzarotti, E., Luque, J., Barril, X., Marti, M. A., & Turjanski, A. G. (2014). TuberQ: A Mycobacterium tuberculosis protein druggability database. Database, 2014, 1–10.

    Article  CAS  Google Scholar 

  47. Wang, L., Sun, Y., Zhao, L., Xu, X., Huang, L., Qin, Y., Su, Y., Zhang, J., & Yan, Q. (2019). Dual RNA-seq uncovers the immune response of Larimichthys crocea to the secY gene of Pseudomonas plecoglossicida from the perspective of host-pathogen interactions. Fish & Shellfish Immunology, 93, 949–957.

    Article  CAS  Google Scholar 

  48. Datta, P., Dasgupta, A., Singh, A. K., Mukherjee, P., Kundu, M., & Basu, J. (2006). Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Molecular Microbiology, 62, 1655–1673.

    Article  CAS  PubMed  Google Scholar 

  49. Katiyar, A., Singh, H., & Azad, K. K. (2018). Identification of missing carbon fixation enzymes as potential drug targets in Mycobacterium tuberculosis. Journal of Integrative Bioinformatics, 15, 1–15.

    Article  Google Scholar 

  50. Sitote, T. M., & Gakkhar, S. (2017). Structural analysis of protein translocase subunit SecY from Mycobacterium tuberculosis H37Rv: A potential target for anti-tuberculosis drug discovery. International Journal of Computational Biology and Drug Design, 10, 374–386.

    Article  Google Scholar 

  51. Huang, J., Huang, L., Cai, K., Xu, Z., Tao, S.-C., & Wang, J.-F. (2019). RIBOi: A database for ribosome-interacting proteins. Acta Biochimica et Biophysica Sinica, 51, 441–443.

    Article  CAS  PubMed  Google Scholar 

  52. Singh, R., Dwivedi, S. P., Gaharwar, U. S., Meena, R., Rajamani, P., & Prasad, T. (2020). Recent updates on drug resistance in Mycobacterium tuberculosis. Journal of Applied Microbiology, 128, 1547–1567.

    Article  CAS  PubMed  Google Scholar 

  53. Shetye, G. S., Franzblau, S. G., & Cho, S. (2020). New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Translational Research, 220, 68–97.

    Article  CAS  PubMed  Google Scholar 

  54. Stefan, M. A., Velazquez, G. M., & Garcia, G. A. (2020). High-throughput screening to discover inhibitors of the CarD· RNA polymerase protein–protein interaction in Mycobacterium tuberculosis. Science and Reports, 10, 1–12.

    CAS  Google Scholar 

  55. Yu, X., Lai, S., Chen, H., & Chen, M. (2020). Protein–protein interaction network with machine learning models and multiomics data reveal potential neurodegenerative disease-related proteins. Human Molecular Genetics, 29, 1378–1387.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Y., You, Z., Li, L., & Chen, Z. (2020). A survey of current trends in computational predictions of protein-protein interactions. Frontiers of Computer Science, 14, 1–12.

    Article  Google Scholar 

  57. Zhang, L., Yu, G., Xia, D., & Wang, J. (2019). Protein–protein interactions prediction based on ensemble deep neural networks. Neurocomputing, 324, 10–19.

    Article  Google Scholar 

  58. Szilagyi, A., Grimm, V., Arakaki, A. K., & Skolnick, J. (2005). Prediction of physical protein–protein interactions. Physical Biology, 2, S1.

    Article  CAS  PubMed  Google Scholar 

  59. Chowdhury, S., Happonen, L., Khakzad, H., Malmström, L., & Malmström, J. (2020). Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria–human protein interactions. Medical Microbiology and Immunology, 209, 265–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Uddin, R., & Azam, S. S. (2019). Identification of glucosyl-3-phosphoglycerate phosphatase as a novel drug target against resistant strain of Mycobacterium tuberculosis (XDR1219) by using comparative metabolic pathway approach. Computational Biology and Chemistry, 79, 91–102.

    Article  CAS  PubMed  Google Scholar 

  61. Singh, P., Rao, R. N., Reddy, J. R. C., Prasad, R., Kotturu, S. K., Ghosh, S., & Mukhopadhyay, S. (2016). PE11, a PE/PPE family protein of Mycobacterium tuberculosis is involved in cell wall remodeling and virulence. Science and Reports, 6, 1–16.

    CAS  Google Scholar 

  62. Soni, D. K., Dubey, S. K., & Bhatnagar, R. (2020). ATP-binding cassette (ABC) import systems of Mycobacterium tuberculosis: Target for drug and vaccine development. Emerging Microbes & Infections, 9, 207–220.

    Article  CAS  Google Scholar 

  63. Gupta, S., Kumar, A., Singh, K., Kumari, R., Sharma, A., Singh, R. K., Pandey, S. K., & Anupurba, S. (2020). Rv1273c, an ABC transporter of Mycobacterium tuberculosis promotes mycobacterial intracellular survival within macrophages via modulating the host cell immune response. International Journal of Biological Macromolecules, 142, 320–331.

    Article  CAS  PubMed  Google Scholar 

  64. Kling, A., Lukat, P., Almeida, D. V., Bauer, A., Fontaine, E., Sordello, S., Zaburannyi, N., Herrmann, J., Wenzel, S. C., & König, C. (2015). Targeting DnaN for tuberculosis therapy using novel griselimycins. Science, 348, 1106–1112.

    Article  CAS  PubMed  Google Scholar 

  65. van Eijk, E., Wittekoek, B., Kuijper, E. J., & Smits, W. K. (2017). DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. Journal of Antimicrobial Chemotherapy, 72, 1275–1284.

    PubMed Central  PubMed  Google Scholar 

  66. Zhan, L., Wang, J., Wang, L., & Qin, C. (2020). The correlation of drug resistance and virulence in Mycobacterium tuberculosis. Biosafety and Health, 2, 18–24.

    Article  Google Scholar 

  67. Ali, A., Hasan, Z., McNerney, R., Mallard, K., Hill-Cawthorne, G., Coll, F., Nair, M., Pain, A., Clark, T. G., & Hasan, R. (2015). Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from Pakistan. PLoS One, 10, e0117771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nikolay, R., van den Bruck, D., Achenbach, J., & Nierhaus, K. H. (2015). Ribosomal proteins: Role in ribosomal functions. In eLS (Vol. 2015, pp. 1–12), John Wiley & Sons, Ltd: Chichester.

  69. Kerns, P. W., Ackhart, D. F., Basaraba, R. J., Leid, J. G., & Shirtliff, M. E. (2014). Mycobacterium tuberculosis pellicles express unique proteins recognized by the host humoral response. Pathogens and Disease, 70, 347–358.

    Article  CAS  PubMed  Google Scholar 

  70. Li, M., Gašparovič, H., Weng, X., Chen, S., Korduláková, J., & Jessen-Trefzer, C. (2020). The two-component locus MSMEG_0244/0246 together with MSMEG_0243 affects biofilm assembly in M. smegmatis correlating with changes in phosphatidylinositol mannosides acylation. Frontiers in Microbiology, 11, 1–15.

    Google Scholar 

  71. Manganelli, R. (2014). Sigma factors: Key molecules in Mycobacterium tuberculosis physiology and virulence. In G. F. Hatfull & W. R., Jacobs Jr. (Eds.), Molecular genetics of mycobacteria (pp. 135–160). ASM Press.

  72. Swain, S. S., Sharma, D., Hussain, T., & Pati, S. (2020). Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerging Microbes & Infections, 9, 1651–1663.

    Article  CAS  Google Scholar 

  73. Pisu, D., Provvedi, R., Espinosa, D. M., Payan, J. B., Boldrin, F., Palù, G., Hernandez-Pando, R., & Manganelli, R. (2017). The alternative sigma factors SigE and SigB are involved in tolerance and persistence to antitubercular drugs. Antimicrobial Agents and Chemotherapy, 61, 1–11.

    Article  CAS  Google Scholar 

  74. Abrahams, K. A., & Besra, G. S. (2021). Synthesis and recycling of the mycobacterial cell envelope. Current Opinion in Microbiology, 60, 58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Edoo, Z., Iannazzo, L., Compain, F., Li de la Sierra Gallay, I., van Tilbeurgh, H., Fonvielle, M., Bouchet, F., Le Run, E., Mainardi, J. L., & Arthur, M. (2018). Synthesis of avibactam derivatives and activity on β-lactamases and peptidoglycan biosynthesis enzymes of mycobacteria. Chemistry—A European Journal, 24, 8081–8086.

    Article  CAS  PubMed  Google Scholar 

  76. Lu, Z., Wang, H., Zhang, A., Liu, X., Zhou, W., Yang, C., Guddat, L., Yang, H., Schofield, C. J., & Rao, Z. (2020). Structures of Mycobacterium tuberculosis penicillin-binding protein 3 in complex with five β-lactam antibiotics reveal mechanism of inactivation. Molecular Pharmacology, 97, 287–294.

    Article  CAS  PubMed  Google Scholar 

  77. Chen, Y., Xu, Y., Yang, S., Li, S., Ding, W., & Zhang, W. (2019). Deficiency of D-alanyl-D-alanine ligase A attenuated cell division and greatly altered the proteome of Mycobacterium smegmatis. MicrobiologyOpen, 8, e00819.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yelamanchi, S. D., & Surolia, A. (2021). Targeting amino acid metabolism of Mycobacterium tuberculosis for developing inhibitors to curtail its survival. IUBMB Life, 73, 643–658.

    Article  CAS  PubMed  Google Scholar 

  79. Lee, J. J., Lim, J., Gao, S., Lawson, C. P., Odell, M., Raheem, S., Woo, J., Kang, S.-H., Kang, S.-S., & Jeon, B.-Y. (2018). Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis. Science and Reports, 8, 1–13.

    Google Scholar 

  80. Li, S., Su, Z., Zhang, C., Xu, Z., Chang, X., Zhu, J., Xiao, R., Li, L., & Zhou, R. (2018). Identification of drug target candidates of the swine pathogen Actinobacillus pleuropneumoniae by construction of protein–protein interaction network. Genes & Genomics, 40, 847–856.

    Article  CAS  Google Scholar 

  81. Tan, M. F., Zou, G., Wei, Y., Liu, W. Q., Li, H. Q., Hu, Q., Zhang, L. S., & Zhou, R. (2020). Protein–protein interaction network and potential drug target candidates of Streptococcus suis. Journal of Applied Microbiology, 131, 658–670.

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Pakistan Science Foundation (Grant No. Med 431) and International Foundation for Science (Grant No. I-1-F-5378-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noor ul Ain Zahra or Reaz Uddin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Supplementary file2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahra, N.u.A., Jamil, F. & Uddin, R. Protein Integrated Network Analysis to Reveal Potential Drug Targets Against Extended Drug-Resistant Mycobacterium tuberculosis XDR1219. Mol Biotechnol 63, 1252–1267 (2021). https://doi.org/10.1007/s12033-021-00377-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00377-w

Keywords

Navigation