Skip to main content

Advertisement

Log in

Fabrication and Evaluation of Layered Double Hydroxide-Enriched ß-Tricalcium Phosphate Nanocomposite Granules for Bone Regeneration: In Vitro Study

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

One of the most important challenges facing tissue engineering researches is the scaffold design with optimum physical and mechanical properties for growth and proliferation of cells, and tissue formation. The aim of this study was to produce a novel nanocomposite containing β-tricalcium phosphate and layered double hydroxide (β-TCP-LDH) and analyzing the capacity of its osteogenic activity in vitro. In this paper, β-tricalcium phosphate and layered double hydroxide powders were synthesized by co-precipitation processes. Then, the porous nanocomposite granules were prepared by the polyurethane sponge replication method. In this study, four kinds of β-TCP granules containing LDHs nanoparticles (ranging from 0.1 to 10 wt%) have been prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) analyses were selected to study the phase structure, morphology, and phase distribution, respectively. Physicochemical characterizations demonstrated that the granules were synthesized successfully. Interconnected macro pores ranging over 200–500 μm were observed for all kinds of granules. SEM micrographs showed that human mesenchymal stem cells (hMSCs) were attached to the surfaces of the granules and proliferated in good shape. The results warranted that the synthesized granules exhibited good biocompatibility and mineralization. Based on the results of compressive strength and porosity tests, the most suitable type of granule is β-TCP/LDH 10 wt% with 77% porosity and compressive modulus of 231.4 MPa, which can be utilized in bone tissue engineering. To our knowledge, layered double hydroxides have not previously been incorporated into tricalcium phosphate granules for bone grafting. Also, this study is the first report on the effects of LDH on the mechanical properties and porosity of β-TCP granules. Our results demonstrated that β-TCP/LDH nanocomposite granule has a great potential for bone defects regeneration and tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eid, K., Eldesouky, A., Fahmy, A., Shahat, A., & AbdElaal, R. (2013). Calcium phosphate scaffold loaded with platinum nanoparticles for bone allograft. American Journal of Biomedical Science, 5, 242–249.

    Google Scholar 

  2. Ferreira, M. M., Brito, A. F., Brazete, D., Pereira, I. C., Carrilho, E., Abrantes, A. M., Pires, A. S., Aguiar, M. J., Carvalho, L., & Botelho, M. F. (2019). Doping β-TCP as a strategy for enhancing the regenerative potential of composite β-TCP—Alkali-free bioactive glass bone grafts. Experimental Study in Rats, Materials, 12, 4.

    CAS  Google Scholar 

  3. Kim, Y.-H., Jyoti, M. A., Youn, M.-H., Youn, H.-S., Seo, H.-S., Lee, B.-T., & Song, H.-Y. (2010). In vitro and in vivo evaluation of a macro porous β-TCP granule-shaped bone substitute fabricated by the fibrous monolithic process. Biomedical Materials, 5, 035007.

    Google Scholar 

  4. Ambard, A. J., & Mueninghoff, L. (2006). Calcium phosphate cement: review of mechanical and biological properties. Journal of Prosthodontics, 15, 321–328.

    PubMed  Google Scholar 

  5. Bohner, M. (2000). Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury, 31, D37–D47.

    Google Scholar 

  6. Dorozhkin, S. V. (2015). Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. Journal of Functional Biomaterials, 6, 708–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Santos, C. F., Silva, A. P., Lopes, L., Pires, I., & Correia, I. J. (2012). Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration. Materials Science and Engineering: C, 32, 1293–1298.

    CAS  Google Scholar 

  8. Lin, K., Chen, L., Qu, H., Lu, J., & Chang, J. (2011). Improvement of mechanical properties of macroporous β-tricalcium phosphate bioceramic scaffolds with uniform and interconnected pore structures. Ceramics International, 37, 2397–2403.

    CAS  Google Scholar 

  9. Shahi, S., & Karbasi, S. (2017). Evaluation of physical and mechanical properties of β-tri-calcium phosphate/poly-3-hydroxybutyrate nanocomposite scaffold for bone tissue engineering application. Scientia Iranica, 24, 1654.

    Google Scholar 

  10. Dorozhkin, S. V., & Epple, M. (2002). Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition, 41, 3130–3146.

    CAS  PubMed  Google Scholar 

  11. Uemura, T., Kojima, T. H., & Saito, T. H. T. (2008). Osteoinductive substances and materials, Encyclopedia of biomaterials and biomedical engineering (pp. 2102–2109). CRC Press.

    Google Scholar 

  12. Dorozhkin, S. V. (2015). Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Materials Science and Engineering: C, 55, 272–326.

    CAS  Google Scholar 

  13. Bakhtiyari, S. S. E., Karbasi, S., Monshi, A., & Montazeri, M. (2016). Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 27, 2.

    PubMed  Google Scholar 

  14. Canillas Pérez, M., Pena, P., Aza Moya, AHd., & Rodríguez, M. A. (2017). Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica y Vidrio. https://doi.org/10.1016/j.bsecv.2017.05.001

    Article  Google Scholar 

  15. García-Páez, I. H., Carrodeguas, R. G., Antonio, H., Baudín, C., & Pena, P. (2014). Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 30, 1–15.

    PubMed  Google Scholar 

  16. Jeong, J., Kim, J. H., Shim, J. H., Hwang, N. S., & Heo, C. Y. (2019). Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterials Research, 23, 1–11.

    CAS  Google Scholar 

  17. Perez, R. A., Kim, H.-W., & Ginebra, M.-P. (2012). Polymeric additives to enhance the functional properties of calcium phosphate cements. Journal of Tissue Engineering, 3, 2041731412439555.

    PubMed  PubMed Central  Google Scholar 

  18. Wu, C., Xia, L., Han, P., Xu, M., Fang, B., Wang, J., Chang, J., & Xiao, Y. (2015). Graphene-oxide-modified β-tricalcium phosphate bioceramics stimulate in vitro and in vivo osteogenesis. Carbon, 93, 116–129.

    CAS  Google Scholar 

  19. Aly, A. F., Eldesouky, A. S., & Eid, K. A. (2012). Evaluation, characterization and cell viability of ceramic scaffold and nano-gold loaded ceramic scaffold for bone tissue engineering. American Journal of Biomedical Science, 4, 316–326.

    CAS  Google Scholar 

  20. Chew, K.-K., Low, K.-L., Zein, S. H. S., McPhail, D. S., Gerhardt, L.-C., Roether, J. A., & Boccaccini, A. R. (2011). Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications. Journal of the Mechanical Behavior of Biomedical Materials, 4, 331–339.

    CAS  PubMed  Google Scholar 

  21. Puddu, M., Broguiere, N., Mohn, D., Zenobi-Wong, M., Stark, W. J., & Grass, R. N. (2015). Magnetically deliverable calcium phosphate nanoparticles for localized gene expression. RSC Advances, 5, 9997–10004.

    CAS  Google Scholar 

  22. Boyd, A., Burke, G., Duffy, H., Cairns, M., O’Hare, P., & Meenan, B. (2008). Characterisation of calcium phosphate/titanium dioxide hybrid coatings. Journal of Materials Science: Materials in Medicine, 19, 485–498.

    CAS  PubMed  Google Scholar 

  23. Jammalamadaka, U., Tappa, K., & Mills, D. K. (2018). Calcium phosphate/clay nanotube bone cement with enhanced mechanical properties and sustained drug release. In M. Zoveidavianpoor (Ed.), Current topics in the utilization of clay in industrial and medical applications. Intechopen.

    Google Scholar 

  24. Shafiei, S. S., Shavandi, M., Ahangari, G., & Shokrolahi, F. (2016). Electrospun layered double hydroxide/poly (ε-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells. Applied Clay Science, 127, 52–63.

    Google Scholar 

  25. Shafiei, S., Birgani, Z. T., Darvish, A., Azimi, M. S., & Solati-Hashjin, M. (2008). Layered double hydroxides for diagnostic applications. In: International Congress of Evaluation of Medical Diagnosis Modern Technologies, Tehran, Iran. pp. 790–793

  26. Khan, A. I., & O’Hare, D. (2002). Intercalation chemistry of layered double hydroxides: recent developments and applications. Journal of Materials Chemistry, 12, 3191–3198.

    CAS  Google Scholar 

  27. Miyata, S. (1975). The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties—I: The systems Mg 2+-Al 3+-NO 3−, Mg 2+-Al 3+-Cl−, Mg 2+-Al 3+-ClO 4−, Ni 2+-Al 3+-Cl− and Zn 2+-Al 3+-Cl−. Clays and Clay Minerals, 23, 369–375.

    CAS  Google Scholar 

  28. Rives, V., del Arco, M., & Martín, C. (2014). Intercalation of drugs in layered double hydroxides and their controlled release: A review. Applied Clay Science, 88, 239–269.

    Google Scholar 

  29. Shafiei, S., Solati-Hashjin, M., Rahim-Zadeh, H., & Samadikuchaksaraei, A. (2013). Synthesis and characterisation of nanocrystalline Ca–Al layered double hydroxide {[Ca2Al (OH) 6] NO3. nH2O}: In vitro study. Advances in Applied Ceramics, 112, 59–65.

    CAS  Google Scholar 

  30. Choy, J.-H., Jung, J.-S., Oh, J.-M., Park, M., Jeong, J., Kang, Y.-K., & Han, O.-J. (2004). Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials, 25, 3059–3064.

    CAS  PubMed  Google Scholar 

  31. Xia, S.-J., Ni, Z.-M., Xu, Q., Hu, B.-X., & Hu, J. (2008). Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs. Journal of Solid State Chemistry, 181, 2610–2619.

    CAS  Google Scholar 

  32. Shafiei, S. S., Mohammadi, S., & Moztarzadeh, F. (2020). Poly (ε-caprolactone)/layered double hydroxide microspheres-aggregated nanocomposite scaffold for osteogenic differentiation of mesenchymal stem cell. Materials Today Communications, 23, 100913.

    Google Scholar 

  33. Miao, Y.-E., Zhu, H., Chen, D., Wang, R., Tjiu, W. W., & Liu, T. (2012). Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems. Materials Chemistry and Physics, 134, 623–630.

    CAS  Google Scholar 

  34. Zhao, N., Shi, S., Lu, G., & Wei, M. (2008). Polylactide (PLA)/layered double hydroxides composite fibers by electrospinning method. Journal of Physics and Chemistry of Solids, 69, 1564–1568.

    CAS  Google Scholar 

  35. Pasand, E. G., Nemati, A., Solati-Hashjin, M., Arzani, K., & Farzadi, A. (2012). Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate. International Journal of Minerals, Metallurgy, and Materials, 19, 441–445.

    Google Scholar 

  36. Farzadi, A., Solati-Hashjin, M., Bakhshi, F., & Aminian, A. (2011). Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceramics International, 37, 65–71.

    CAS  Google Scholar 

  37. Duan, X., & Evans, D.. (2006) Layered double hydroxides. Part of the structure and bonding book series (STRUCTURE, voloume. 119). Springer.

  38. Bravo-Suárez, J. J., Páez-Mozo, E. A., & Oyama, S. T. (2004). Review of the synthesis of layered double hydroxides: A thermodynamic approach. Quimica Nova, 27, 601–614.

    Google Scholar 

  39. Wong, W. Y., Mohd Noor, A. F., & Othman, R. (2016). Sintering of beta-tricalcium phosphate scaffold using polyurethane template. Key Engineering Materials, 694, 94–98.

    Google Scholar 

  40. Ramay, H. R., & Zhang, M. (2003). Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials, 24, 3293–3302.

    CAS  PubMed  Google Scholar 

  41. Chappard, D., Terranova, L., Mallet, R., & Mercier, P. (2015). 3D porous architecture of stacks of β-TcP granules compared with that of trabecular bone: a microcT, vector analysis, and compression study. Frontiers in Endocrinology, 6, 161.

    PubMed  PubMed Central  Google Scholar 

  42. Hsu, Y., Turner, I., & Miles, A. (2007). Fabrication and mechanical testing of porous calcium phosphate bioceramic granules. Journal of Materials Science: Materials in Medicine, 18, 1931–1937.

    CAS  PubMed  Google Scholar 

  43. Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27, 2907–2915.

    CAS  PubMed  Google Scholar 

  44. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., & Yamamuro, T. (1990). Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. Journal of Biomedical Materials Research, 24, 721–734.

    CAS  PubMed  Google Scholar 

  45. Kino, D., Tokudome, Y., Vaz, P. D., Nunes, C. D., & Takahashi, M. (2017). Synthesis of Co–Al layered double hydroxide nanoclusters as reduction nanocatalyst in aqueous media. Journal of Asian Ceramic Societies, 5, 466–471.

    Google Scholar 

  46. Seidenstuecker, M., Mrestani, Y., Neubert, R. H., Bernstein, A., & Mayr, H. O. (2013). Release kinetics and antibacterial efficacy of microporous β-TCP coatings. Journal of Nanomaterials. https://doi.org/10.1155/2013/842951

    Article  Google Scholar 

  47. LeGeros, R. Z. (2008). Calcium phosphate-based osteoinductive materials. Chemical Reviews, 108, 4742–4753.

    PubMed  Google Scholar 

  48. Cunningham, E., Dunne, N., Clarke, S., Choi, S., Walker, G., Wilcox, R., Unger, R., Buchnan, F., & Kirkpatrick, C. (2011). Comparative characterisation of 3-D hydroxyapatite scaffolds developed via replication of synthetic polymer foams and natural marine sponges. Journal of Tissue Science and Engineering S, 1, 1–9.

    Google Scholar 

  49. Lakatos, É., Magyar, L., & Bojtár, I. (2014). Material properties of the mandibular trabecular bone. Journal of Medical Engineering. https://doi.org/10.1155/2014/470539

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gaharwar, A. K., Mukundan, S., Karaca, E., Dolatshahi-Pirouz, A., Patel, A., Rangarajan, K., Mihaila, S. M., Iviglia, G., Zhang, H., & Khademhosseini, A. (2014). Nanoclay-enriched poly (ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Engineering Part A, 20, 2088–2101.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Institute of Genetic Engineering and Biotechnology and Iran National Science Foundation Grant# 93026858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedeh Sara Shafiei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, N., Shafiei, S.S. Fabrication and Evaluation of Layered Double Hydroxide-Enriched ß-Tricalcium Phosphate Nanocomposite Granules for Bone Regeneration: In Vitro Study. Mol Biotechnol 63, 477–490 (2021). https://doi.org/10.1007/s12033-021-00315-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00315-w

Keywords

Navigation