Skip to main content
Log in

Optimisation of the Production and Bleaching Process for a New Laccase from Madurella mycetomatis, Expressed in Pichia pastoris: from Secretion to Yielding Prominent

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 12 November 2020

This article has been updated

Abstract

Laccases are polyphenol oxidoreductases used in a number of industrial applications. Due to the increasing demand for these “green catalysis” enzymes, the identification and biochemical characterisation of their novel properties is essential. In our study, cloned Madurella mycetomatis laccase (mmlac) genes were heterologously expressed in the methylotrophic yeast host Pichia pastoris. The high yield of the active recombinant protein in P. pastoris demonstrates the efficiency of a reliably constructed plasmid to express the laccase gene. The optimal biochemical conditions for the successfully expressed MmLac enzyme were identified. Detailed structural properties of the recombinant laccase were determined, and its utility in decolourisation and textile bleaching applications was examined. MmLac demonstrates good activity in an acidic pH range (4.0–6.0); is stable in the presence of cationic metals, organic solvents and under high temperatures (50–60 °C); and is stable for long-term storage at − 20 °C and − 80 °C for up to eight weeks. The structural analysis revealed that the catalytic residues are partially similar to other laccases. MmLac resulted in an increase in whiteness, whilst demonstrating high efficiency and stability and requiring the input of fewer chemicals. The performance of this enzyme makes it worthy of investigation for use in textile biotechnology applications, as well as within environmental and food technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 12 November 2020

    In the paper by “Tülek, A., Karataş, E., Çakar, M. M., Aydın, D., Yılmazcan, Ö, Binay, B. (2020). Optimisation of the Production and Bleaching Process for a New Laccase from Madurella mycetomatis, Expressed in Pichia pastoris: from Secretion to Yielding Prominent Performance. <Emphasis Type="Italic">Molecular Biotechnology</Emphasis>, <ExternalRef><RefSource>https://doi.org/10.1007/s12033-020-00281-9</RefSource><RefTarget Address="10.1007/s12033-020-00281-9" TargetType="DOI"/></ExternalRef>”

References

  1. Messerschmidt, A. (1990). Modelling and structural relationships. Enzyme, 352, 341–352.

    Google Scholar 

  2. Matera, I., Gullotto, A., Tilli, S., Ferraroni, M., Scozzafava, A., & Briganti, F. (2008). Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorganica Chimica Acta, 361, 4129–4137.

    CAS  Google Scholar 

  3. Moreno, A. D., Ibarra, D., Eugenio, M. E., & Tomás-Pejó, E. (2019). Laccases as versatile enzymes: From industrial uses to novel applications. Journal of Chemical Technology & Biotechnology, 95, 481–494.

    Google Scholar 

  4. Wang, T. N., Lu, L., Wang, J. Y., Xu, T. F., Li, J., & Zhao, M. (2015). Enhanced expression of an industry applicable CotA laccase from Bacillus subtilis in Pichia pastoris by non-repressing carbon sources together with pH adjustment: Recombinant enzyme characterization and dye decolorization. Process Biochemistry, 50, 97–103.

    Google Scholar 

  5. Yang, Q., Zhang, M., Zhang, M., Wang, C., Liu, Y., Fan, X., et al. (2018). Characterization of a novel, cold-adapted, and thermostable laccase-like enzyme with high tolerance for organic solvents and salt and potent dye decolorization ability, derived from a marine metagenomic library. Frontiers in Microbiology, 9, 2998.

    PubMed  PubMed Central  Google Scholar 

  6. Patrik, J. H., Sreedhar, K., Timothy, Y. J., Jason, R. T., & Ursula, K. (2006). Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS Journal, 273, 2308–2326.

    Google Scholar 

  7. Van de Sande, W. W. J., de Kat, J., Coppens, J., Ahmed, A. O. A., Fahal, A., Verbrugh, H., et al. (2007). Melanin biosynthesis in Madurella mycetomatis and its effect on susceptibility to itraconazole and ketoconazole. Microbes and Infection, 9, 1114–1123.

    PubMed  Google Scholar 

  8. Ahmed, S. A., van de Sande, W. W. J., Stevens, D. A., Fahal, A., van Diepeningen, A. D., Menken, S. B. J., et al. (2014). Revision of agents of black-grain eumycetoma in the order Pleosporales. Persoonia, 33, 141–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Piscitelli, A., Pezzella, C., Giardina, P., Faraco, V., & Giovanni, S. (2010). Heterologous laccase production and its role in industrial applications. Bioengineered Bugs, 1(4), 252–262.

    PubMed  PubMed Central  Google Scholar 

  10. Yang, J., Li, W., Bun Ng, T., Deng, X., Lin, J., & Ye, X. (2017). Laccases: Production, expression regulation, and applications in pharmaceutical biodegradation. Frontiers in Microbiology, 8, 832.

    PubMed  PubMed Central  Google Scholar 

  11. Vogl, T., & Glieder, A. (2013). Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnology, 30, 385–404.

    CAS  PubMed  Google Scholar 

  12. Juturu, V., & Wu, J. C. (2018). Heterologous protein expression in Pichia pastoris: Latest research progress and applications. ChemBioChem, 18, 1–16.

    Google Scholar 

  13. Antošová, Z., & Sychrová, H. (2016). Yeast hosts for the production of recombinant laccases: A review. Molecular Biotechnology, 58, 93–116.

    PubMed  Google Scholar 

  14. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  15. Bronikowski, A., Hagedoorn, P. L., Koschorreck, K., & Urlacher, V. B. (2017). Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express, 7, 73.

    PubMed  PubMed Central  Google Scholar 

  16. Yin, Q., Zhou, G., Peng, C., Zhang, Y., Kües, U., Liu, J., et al. (2019). The first fungal laccase with an alkaline pH optimum obtained by directed evolution and its application in indigo dye decolorization. AMB Express, 9, 151.

    PubMed  PubMed Central  Google Scholar 

  17. Lu, L., Zhao, M., Wang, T. N., Zhao, L. Y., Du, M. H., Li, T. L., et al. (2012). Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresource Technology, 115, 35–40.

    CAS  PubMed  Google Scholar 

  18. Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43, 174–181.

    Google Scholar 

  19. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al. (2011). Higgins, fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Molecular Systems Biology, 7, 539–539.

    PubMed  PubMed Central  Google Scholar 

  20. Rice, P., Longden, L., & Bleasby, A. (2000). EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics, 16, 276–277.

    CAS  PubMed  Google Scholar 

  21. Garnier, J., Osguthorpe, D. J., & Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology, 120, 97–120.

    CAS  PubMed  Google Scholar 

  22. Kallio, J. P., Auer, S., Jänis, J., Andberg, M., Kruus, K., Rouvinen, J., et al. (2009). Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. Journal of Molecular Biology, 392, 895–909.

    CAS  PubMed  Google Scholar 

  23. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., et al. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ayed, L., Chaieb, K., Cheref, A., & Bakhrouf, A. (2010). Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination, 260, 137–146.

    CAS  Google Scholar 

  25. AATCC American Association of Textile Chemists and Colorists AATCC, (2015) Technical Manual, 90.

  26. Saraf, N. M., Sheth, G. N., & Sabale, A. G. (2009). Role of wetting agents and detergents in bleaching. Colourage, 56, 87–91.

    CAS  Google Scholar 

  27. Grancarić, A. M., Pušić, T., & Tarbuk, A. (2006). Enzymatic scouring for better textile properties of knitted cotton fabrics. Journal of Natural Fibers, 3, 189–197.

    Google Scholar 

  28. Lukács, G. (1989). Whiteness—A feasible method for its evaluation. Measurement, 7, 77–84.

    Google Scholar 

  29. Cázares-García, S. V., Vázquez-Garcidueñas, M. S., & Vázquez-Marrufo, G. (2013). Structural and phylogenetic analysis of laccases from Trichoderma: A bioinformatic approach. PLoS ONE, 8, e55295.

    PubMed  PubMed Central  Google Scholar 

  30. Kiiskinen, L. L., & Saloheimo, M. (2004). Molecular cloning and expression in Saccharomyces cerevisiae of laccase gene from the Ascomycete Melanocarpus albomyces. Applied and Environmental Microbiology, 70, 137–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mate, D. M., Gonzalez-Perez, D., Kittl, R., Ludwig, R., & Alcalde, M. (2013). Functional expression of a blood tolerant laccase in Pichia pastoris. BMC Biotechnology, 13, 1–12.

    Google Scholar 

  32. Mtibaà, R., Barriuso, J., de Eugenio, L., Aranda, E., Belbahri, L., Nasri, M., et al. (2018). Purification and characterization of a fungal laccase from the Ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye. International Journal of Biological Macromolecules, 120, 1744–1751.

    PubMed  Google Scholar 

  33. Kalyani, D., Tiwari, M. K., Li, J., Kim, S. C., Kalia, V. C., Kang, Y. C., et al. (2015). A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS ONE, 10, e0120156.

    PubMed  PubMed Central  Google Scholar 

  34. Yang, Y., Ding, Y., Liao, X., & Cai, Y. (2013). Purification and characterization of a new laccase from Shiraia sp. SUPER-H168. Process Biochemistry, 48, 351–357.

    CAS  Google Scholar 

  35. Kittl, R., Mueangtoom, K., Gonaus, C., Khazaneh, S. T., Sygmund, C., Haltrich, D., et al. (2012). A chloride tolerant laccase from the plant pathogen Ascomycete Botrytis aclada expressed at high levels in Pichia pastoris. Journal of Biotechnology, 157, 304–314.

    CAS  PubMed  Google Scholar 

  36. Ben Younes, S., & Sayadi, S. (2011). Purification and characterization of a novel trimeric and thermotolerant laccase produced from the Ascomycete Scytalidium thermophilum strain. Journal of Molecular Catalysis B: Enzymatic, 73, 35–42.

    CAS  Google Scholar 

  37. Wu, Y. R., Luo, Z. H., Kwok-Kei, C. R., & Vrijmoed, L. L. P. (2010). Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresource Technology, 101, 9772–9777.

    CAS  PubMed  Google Scholar 

  38. Junghanns, C., Pecyna, M. J., Böhm, D., Jehmlich, N., Martin, C., Von Bergen, M., et al. (2009). Biochemical and molecular genetic characterisation of a novel laccase produced by the aquatic Ascomycete Phoma sp. UHH 5-1-03. Applied Microbiology and Biotechnology, 84, 1095–1105.

    CAS  PubMed  Google Scholar 

  39. Bulter, T., Alcalde, M., Sieber, V., Meinhold, P., Schlachtbauer, C., & Arnold, F. H. (2003). Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Applied and Environmental Microbiology, 69, 987–995.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo, X., Zhou, S., Wang, Y., Song, J., Wang, H., Kong, D., et al. (2016). Characterization of a highly thermostable and organic solvent-tolerant copper-containing polyphenol oxidase with dye-decolorizing ability from Kurthia huakuii LAM0618T. PLoS ONE, 11(10), e0164810.

    PubMed  PubMed Central  Google Scholar 

  41. Ernst, H. A., Jørgensen, L. J., Bukh, C., Piontek, K., Plattner, D. A., Østergaard, L. H., et al. (2018). A comparative structural analysis of the surface properties of asco-laccases. PLoS ONE, 13, 1–27.

    Google Scholar 

  42. Srinivasan, C., D’Souza, T. M., Boominathan, K., & Reddy, C. A. (1995). Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Applied and Environmental Microbiology, 61, 4274–4277.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, H., Tong, C., Du, B., Liang, S., & Lin, Y. (2015). Expression and characterization of LacMP, a novel fungal laccase of Moniliophthora perniciosa FA553. Biotechnology Letters, 37, 1829–1835.

    PubMed  Google Scholar 

  44. Gu, C., Zheng, F., Long, L., Wang, J., & Ding, S. (2014). Engineering the expression and characterization of two novel laccase isoenzymes from Coprinus comatus in Pichia pastoris by fusing an additional ten amino acids tag at N-terminus. PLoS ONE, 9, e93912.

    PubMed  PubMed Central  Google Scholar 

  45. Kallio, J. P., Gasparetti, C., Andberg, M., Boer, H., Koivula, A., Kruus, K., et al. (2011). Crystal structure of an Ascomycete fungal laccase from Thielavia arenaria–common structural features of asco-laccases. The FEBS journal, 278(13), 2283–2295.

    CAS  PubMed  Google Scholar 

  46. Andberg, M., Hakulinen, N., Auer, S., Saloheimo, M., Koivula, A. R., et al. (2009). Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. The FEBS Journal, 276(21), 6285–6300.

    CAS  PubMed  Google Scholar 

  47. Looser, V., Bruhlmann, B., Bumbak, F., Stenger, C., Costa, M., Camattari, A., et al. (2014). Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnology Advances, 33, 1177–1193.

    Google Scholar 

  48. Li, Z., Xiong, F., Lin, Q., D’Anjou, M., Daugulis, A. J., Yang, D. S. C., et al. (2001). Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expression and Purification, 21, 438–445.

    PubMed  Google Scholar 

  49. Stajić, M., Persky, L., Hadar, Y., Friesem, D., Duletić-Laušević, S., Wasser, S. P., et al. (2006). Effect of copper and manganese ions on activities of laccase and peroxidases in three Pleurotus species grown on agricultural wastes. Applied Biochemistry and Biotechnology, 128, 87–96.

    PubMed  Google Scholar 

  50. Garg, N., Bieler, N., Kenzom, T., Chhabra, M., Ansorge-Schumacher, M., & Mishra, S. (2012). Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. BMC Biotechnology, 12, 75.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, B., Wang, X., Tian, Y., Li, Z., Gao, J., Yan, Y., et al. (2016). Heterologous expression and characterization of a laccase from Laccaria bicolor in Pichia pastoris. Biotechnology and Biotechnological Equipment, 30, 63–68.

    Google Scholar 

  52. Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., et al. (2002). Crystal structure of a four-copper laccase complexed with an arylamine: Insights into substrate recognition and correlation with kinetics. Biochemistry, 41, 7325–7333.

    CAS  PubMed  Google Scholar 

  53. Kaliwal, B. B., & Vantamuri, A. B. (2016). Purification and characterization of laccase from Marasmius species BBKAV79 and effective decolorization of selected textile dyes. 3 Biotech, 6, 189.

    PubMed  PubMed Central  Google Scholar 

  54. Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366.

    CAS  PubMed  Google Scholar 

  55. Manavalan, T., Manavalan, A., & Heese, K. (2015). Characterization of lignocellulolytic enzymes from white-rot fungi. Current Microbiology, 70, 485–498.

    CAS  PubMed  Google Scholar 

  56. Zhou, C., Dong, A., Wang, Q., Yu, Y., Fan, X., Cao, Y., et al. (2017). Effect of common metal ions and anions on laccase catalysis of guaiacol and lignocellulosic fiber. BioResources, 12, 5102–5117.

    CAS  Google Scholar 

  57. Jones, S. M., & Solomon, E. I. (2015). Electron transfer and reaction mechanism of laccases. Cellular and Molecular Life Sciences, 72, 869–883.

    CAS  PubMed  Google Scholar 

  58. Champagne, P. P., Nesheim, M. E., & Ramsay, J. A. (2013). A mechanism for NaCl inhibition of Reactive Blue 19 decolorization and ABTS oxidation by laccase. Applied Microbiology and Biotechnology, 97, 6263–6269.

    CAS  PubMed  Google Scholar 

  59. Kepp, K. P. (2015). Halide binding and inhibition of laccase copper clusters: The role of reorganization energy. Inorganic Chemistry, 54, 476–483.

    CAS  PubMed  Google Scholar 

  60. Enaud, E., Trovaslet, M., Naveau, F., Decristoforo, A., Bizet, S., Vanhulle, S., et al. (2011). Laccase chloride inhibition reduction by an anthraquinonic substrate. Enzyme and Microbial Technology, 49, 517–525.

    CAS  PubMed  Google Scholar 

  61. Rodakiewicz-Nowak, J., Kasture, S. M., Dudek, B., & Haber, J. (2011). Effect of various water-miscible solvents on enzymatic activity of fungal laccases. Journal of Molecular Catalysis B: Enzymatic, 11, 1–11.

    Google Scholar 

  62. Wu, M. H., Lin, M. C., Lee, C. C., Yu, S. M., Wang, A. H. J., & Ho, T. H. D. (2019). Enhancement of laccase activity by pre-incubation with organic solvents. Scientific Reports, 9, 9754.

    PubMed  PubMed Central  Google Scholar 

  63. Afreen, S., Shamsi, T. N., Baig, M. A., Ahmad, N., Fatima, S., Qureshi, M. I., et al. (2017). A novel multicopper oxidase (laccase) from Cyanobacteria: Purification, characterization with potential in the decolorization of anthraquinonic dye. PLoS ONE, 12, e0175144.

    PubMed  PubMed Central  Google Scholar 

  64. Hakulinen, N., Kiiskinen, L. L., Kruus, K., Saloheimo, M., Paanen, A., Koivula, A., et al. (2002). Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nature Structural Biology, 9, 601–605.

    CAS  PubMed  Google Scholar 

  65. Dai, Y., Yao, J., Song, Y., Liu, X., Wang, S., & Yuan, Y. (2016). Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water. Journal of Hazardous Materials, 317, 485–493.

    CAS  PubMed  Google Scholar 

  66. Baldrian, P. (2006). Fungal laccases-occurrence and properties. FEMS Microbiology Reviews, 30, 215–242.

    CAS  PubMed  Google Scholar 

  67. Xu, F. (1996). Oxidation of phenols, anilines, and benzenethiols by fungal laccases: Correlation between activity and redox potentials as well as halide inhibition. Biochemistry, 35, 7608–7614.

    CAS  PubMed  Google Scholar 

  68. Thurston, C. F. (1996). The structure and function of fungal laccases. Microbiology, 140, 19–26.

    Google Scholar 

  69. Eggert, C., Temp, U., & Eriksson, K. L. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Applied and Environmental Microbiology, 62(4), 1151–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Abdel-Halim, E. S. (2012). Simple and economic bleaching process for cotton fabric. Carbohydrate Polymers, 88, 1233–1238.

    CAS  Google Scholar 

  71. Abou-Okeil, A., El-Shafie, A., & El Zawahry, M. M. (2010). Ecofriendly laccase-hydrogen peroxide/ultrasound-assisted bleaching of linen fabrics and its influence on dyeing efficiency. Ultrasonics Sonochemistry, 17, 383–390.

    CAS  PubMed  Google Scholar 

  72. Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., De Los, H., et al. (2019). Laccases: structure, function, and potential application in water bioremediation. Microbial Cell Factories, 18, 200.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodríguez-Couto, S. (2019). Fungal laccase: A versatile enzyme for biotechnological applications. Recent advancement in white biotechnology through fungi. Cham: Springer.

    Google Scholar 

  74. Abadulla, E., Tzanov, T., Costa, S., Robra, K. H., Cavaco-Paulo, A., & Gubitz, G. M. (2000). Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and Environmental Microbiology, 66, 3357–3362.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Deska, M., & Kończak, B. (2019). Immobilized fungal laccase as “green catalyst” for the decolourization process-state of the art. Process Biochemistry, 84, 112–123.

    CAS  Google Scholar 

  76. Nyanhongo, G. S., Gomes, J., Gübitz, G. M., Zvauya, R., Read, J., & Steiner, W. (2002). Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Research, 36, 1449–1456.

    CAS  PubMed  Google Scholar 

  77. Sen, S. K., Raut, S., Bandyopadhyay, P., & Raut, S. (2016). Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews, 30, 112–133.

    Google Scholar 

  78. Tzanov, T., Basto, C., Gübitz, G. M., & Cavaco-Paulo, A. (2003). Laccases to improve the whiteness in a conventional: Bleaching of cotton. Macromolecular Materials and Engineering, 288, 807–810.

    CAS  Google Scholar 

  79. Kodaka, M. (2004). Interpretation of concentration-dependence in aggregation kinetics. Biophysical Chemistry, 109, 325–332.

    CAS  PubMed  Google Scholar 

  80. Johannes, C., & Majcherczyk, A. (2000). Laccase activity tests and laccase inhibitors. Journal of Biotechnology, 78, 193–199.

    CAS  PubMed  Google Scholar 

  81. Abate, M. T. (2017). Combined pre-treatment and causticization of cotton fabric for improved dye uptake. Advance Research in Textile Engineering, 2, 1016.

    Google Scholar 

  82. Mosjov, K. (2018). Enzymatic scouring and bleaching of cotton terry fabrics-opportunity of the improvement on some physicochemical and mechanical properties of the fabrics. Journal of Natural Fibers, 15, 740–751.

    Google Scholar 

  83. Tzanov, T., Calafell, M., Guebitz, G. M., & Cavaco-Paulo, A. (2001). Bio-preparation of cotton fabrics. Enzyme and Microbial Technology, 29, 357–362.

    CAS  Google Scholar 

  84. Jordanov, I., & Mangovska, B. (2011). Accessibility of mercerized, bioscoured and dried cotton yarns. Indian Journal of Fiber & Textile Research, 36, 259–265.

    CAS  Google Scholar 

  85. Gonçalves, I., Herrero-Yniesta, V., Perales Arce, I., Escrigas Castañeda, M., Cavaco-Paulo, A., & Silva, C. (2014). Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics. Ultrasonics Sonochemistry, 21, 1535–1543.

    PubMed  Google Scholar 

  86. Basto, C., Tzanov, T., & Cavaco-Paulo, A. (2007). Combined ultrasound-laccase assisted bleaching of cotton. Ultrasonics Sonochemistry, 14, 350–354.

    CAS  PubMed  Google Scholar 

  87. Pereira, L., Bastos, C., Tzanov, T., Cavaco-Paulo, A., & Guebitz, G. M. (2005). Environmentally friendly bleaching of cotton using laccases. Environmental Chemistry Letters, 3, 66–69.

    CAS  Google Scholar 

  88. Tavares, C., Silva, F. J. G., Correia, A. I., Pereira, T., Ferreira, L. P., & De Almeida, F. (2018). Study on the optimization of the textile coloristic performance of the bleaching process using pad-steam. Procedia Manufacturing, 17, 758–765.

    Google Scholar 

  89. Bristi, U., Pias, A. K., & Lavlu, F. H. (2019). A Sustainable process by bio-scouring for cotton knitted fabric suitable for next generation. Journal of Textile Engineering & Fashion Technology, 5, 41–48.

    Google Scholar 

  90. Martins, M., Azoia, N., Silva, C., & Cavaco-Paulo, A. (2015). Stabilization of enzymes in micro-emulsions for ultrasound processes. Biochemical Engineering Journal, 93, 115–118.

    CAS  Google Scholar 

  91. Singh, G., & Arya, S. K. (2019). Utility of laccase in pulp and paper industry: A progressive step towards the green technology. International Journal of Biological Macromolecules, 134, 1070–1084.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help and support of ETDAM (Enzyme Testing and Consultation Center, Gebze Technical University Turkey).

Author information

Authors and Affiliations

Authors

Contributions

BB designed the study. AT, EK, MMÇ, DA, ÖY performed the study. AT, EK, MMÇ, DA, ÖY and BB analysed the data. AT and BB wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Barış Binay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and/or Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tülek, A., Karataş, E., Çakar, M. M., Aydın, D., Yılmazcan, Ö., & Binay, B. (2020). Optimisation of the production and bleaching process for a New Laccase from Madurella mycetomatis, expressed in Pichia pastoris: From Secretion to Yielding Prominent Performance. Molecular Biotechnology. https://doi.org/10.1007/s12033-020-00281-9.

We noted an error in the “Funding Information” section of the paper. We would like to clarify that we do not have any declaration of funding for this paper.

The original article has been corrected.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1198 kb)

Fig. S1 Multiple amino acid sequence alignments of laccases. Percentages indicate the sequence identity between MmLac and isozyme laccases (Mm: Madurella mycetomatis; Ta: Thielavia arenaria; Ma: Melanocarpus albomyces; Mt: Myceliophthora thermophila; Ba: Botrytis aclada and An: Aspergillus niger). The orange, magenta, blue, red and green rectangles indicate deleted MmLac native signal sequences, N-glycosylation sites, Cu2+ binding sites, catalytic residues of the MmLac active site pocked and deleted MmLac native propeptide sequence, respectively. Fig. S2 Amino acid sequence and functional regions of fusion MmLac. The native N-terminal signal peptide and native pro-peptide are shown in orange, the MF-α signal in grey, N-terminal extension sequence (ETEAEF) in cyan, polyhistidine tag (6xHis-tag) in yellow, MmLac in claret red and C-terminal pro-peptide in green. Fig. S3 Screening and production of extracellular MmLac in MM agar plates: (a) Control plate; (b) Pichia pastoris X33 containing mmlac1 construct; (c) Pichia pastoris X33 containing mmlac2 construct. Fig. S4 Michaelis-Menten plot of MmLac in presence of (a) ABTS; (b) DMP; (c) SGZ. Fig. S5 MALDI-TOF mass spectrum of the purified MmLac laccase: a) Purified MmLac with glycosylation site (67.4 kDa); b) Deglycosylated laccase (62.0 kDa).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tülek, A., Karataş, E., Çakar, M.M. et al. Optimisation of the Production and Bleaching Process for a New Laccase from Madurella mycetomatis, Expressed in Pichia pastoris: from Secretion to Yielding Prominent. Mol Biotechnol 63, 24–39 (2021). https://doi.org/10.1007/s12033-020-00281-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00281-9

Keywords

Navigation