Skip to main content
Log in

A Novel White-to-Blue Colony Formation Assay to Select for Optimized sgRNAs

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

CRISPR/Cas9-mediated genome editing technology consists of a single-guide RNA (sgRNA), and the Cas9 endonuclease has the potential to treat genetic diseases in most tissues and organisms. In this system, the Cas9 protein can be directed to target genomic DNA sequences as “molecular scissors” with the guidance of sgRNAs. However, the target-specific activities of different sgRNAs are highly variable; thus, it is crucial to search for a simple, quick and economical method to screen for optimized sgRNAs with high target specificity. We have adopted and verified a newly developed white-to-blue colony formation assay to quickly screen for sgRNAs optimized for the EphA2 gene, which is highly expressed in hormone-resistant prostate cancer (PC-3) cells. This assay promises to screen for optimized sgRNAs more simply, rapidly, and efficiently. Our results suggest that the white-to-blue colony formation assay might be a useful screening strategy to quickly select for optimized sgRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Biotechnology, 8, 2281–2308.

    CAS  Google Scholar 

  2. Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., et al. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31, 227–229.

    Article  CAS  Google Scholar 

  3. Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., et al. (2013). Genome editing with RNA-guided Cas9 nuclease in zebrafish embryo. Cell Research, 23, 465–472.

    Article  CAS  Google Scholar 

  4. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-Guided human genome engineering via Cas9. Science, 339, 823–826.

    Article  CAS  Google Scholar 

  5. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

    Article  CAS  Google Scholar 

  6. Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827–832.

    Article  CAS  Google Scholar 

  7. Kleinstiver, B. P., Prew, M. S., Tsai, S. Q., Topkar, W., Nguyen, N. T., Zhang, Z., et al. (2015). Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 523, 481–485.

    Article  Google Scholar 

  8. Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in human cells. Elife, 2, e00471.

    Article  Google Scholar 

  9. Bian, S., Zhou, Y., Hu, Y., Cheng, J., Chen, X., Xu, Y., & Liu, P. (2017). High-throughput in situ cell electroporation microsystem for parallel delivery of single guide RNAs into mammalian cells. Scientific Reports, 7, 42512.

    Article  CAS  Google Scholar 

  10. Tsai, S. Q., Zheng, Z., Nguyen, N. T., Liebers, M., Topkar, V. V., Thapar, V., et al. (2015). Guide-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology, 33, 187–197.

    Article  CAS  Google Scholar 

  11. Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H. R., et al. (2015). Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects on human cells. Nature Methods, 12, 237–243.

    Article  CAS  Google Scholar 

  12. Vouillot, L., Thelie, A., & Pollet, N. (2015). Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3(Bethesda), 5, 407–415.

    PubMed Central  Google Scholar 

  13. Zhang, H., Zhang, X., Fan, C., Xie, Q., Xu, C., Zhao, Q., et al. (2016). A novel sgRNA selection system for CRISPR-Cas9 in mammalian cells. Biochemical and Biophysical Research Communications, 471, 528–532.

    Article  CAS  Google Scholar 

  14. Carrington, B., Varshney, G. K., Burgess, S. M., & Sood, R. (2015). CRISPR-STAT: An easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic Acids Research, 43, e157.

    Article  Google Scholar 

  15. Feldman, B. J., & Feldman, D. (2001). The development of androgen-independent prostate cancer. Nature Reviews Cancer, 1, 34–45.

    Article  CAS  Google Scholar 

  16. Kullander, K., & Klein, R. (2002). Mechanisms and functions of Eph and ephrin signalling. Nature Reviews Molecular Cell Biology, 3, 475–486.

    Article  CAS  Google Scholar 

  17. Pasquale, E. B. (1997). The Eph family of receptors. Current Opinion in Cell Biology, 9, 608–615.

    Article  CAS  Google Scholar 

  18. Tandon, M., Vemula, S. V., & Mittal, S. K. (2011). Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opinion on Therapeutic Targets, 15, 31–51.

    Article  CAS  Google Scholar 

  19. Lisle, J. E., Mertens-Walker, I., Rutkowski, R., Herington, A. C., & Stephenson, S. A. (1835). Eph receptors and their ligands: Promising molecular biomarkers and therapeutic targets in prostate cancer. Biochimica et BiophysicaActa, 2013, 243–257.

    Google Scholar 

  20. Walker-Daniels, J., Coffman, K., Azimi, M., Rhim, J. S., Bostwick, D. G., Snyder, P., et al. (1999). Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate, 41, 275–280.

    Article  CAS  Google Scholar 

  21. Brinkman, E. K., Chen, T., Amendola, M., & van Steensel, B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research, 42, e168.

    Article  Google Scholar 

  22. Zhou, L., Wang, Q., & Li, K. (2016). Construction of a vector with two repeats flanking CRISPR/Cas9 target for the evaluation of enzymatic activity in E. coli. Journal of Nanoscience & Nanotechnology, 16, 12332–12336.

    Article  CAS  Google Scholar 

  23. Wang, Q., Xiao, L., Zhou, L., Sun, W. P., Xing, C. G., Li, K., & He, N. Y. (2018). Comparison of the off-target effects among one-base to three-base mismatched targets of gRNA using a blue to white assay. Journal of Nanoscience & Nanotechnology, 18, 1594–1598.

    Article  CAS  Google Scholar 

  24. Yin, Y. F., Wang, Q., Xiao, L., Wang, F. J., Song, Z., Zhou, C. L., et al. (2018). Advances in the engineering of the gene editing enzymes and the genomes: Understanding and handling the off-target effects of CRISPR/Cas9. Journal of Biomedical Nanotechnology, 14, 456–476.

    Article  CAS  Google Scholar 

  25. Lee, J. S., Kallehauge, T. B., Pedersen, L. E., & Kildegaard, H. F. (2015). Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Scientific Reports, 5, 8572.

    Article  CAS  Google Scholar 

  26. Zhang, J. H., Adikaram, P., Pandey, M., Genis, A., & Simonds, W. F. (2016). Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered, 7, 166–174.

    Article  CAS  Google Scholar 

  27. Dang, Y., Jia, G., Choi, J., Ma, H., Anaya, E., Ye, C., et al. (2015). optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biology, 16, 280.

    Article  Google Scholar 

Download references

Acknowledgements

The authors were financially supported by the National Natural Science Foundation of China (Grant No. 81801754), the Second Affiliated Hospital of Soochow University Preponderant Clinic Discipline Group project funding (Grant No. XKQ2015009), Jiangsu Province Youth medical talent support program (Grant No. QNRC2016868), the Suzhou Science and Technology Planning Project (Grant No. SYS201727). In addition, Professor Li Kai has provided a great help to this supplementary experiment and the modification of the article. We were appreciated for his help very much.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Xiao or Junkang Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Chen, T., Zhang, Y. et al. A Novel White-to-Blue Colony Formation Assay to Select for Optimized sgRNAs. Mol Biotechnol 63, 1–12 (2021). https://doi.org/10.1007/s12033-020-00280-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00280-w

Keywords

Navigation