Skip to main content
Log in

Cloning and Characterization of a Chondroitin AC Exolyase from Arthrobacter sp. SD-04

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Glycosaminoglycans (GAGs) and their low-molecular weight derivates have received considerable interest in terms of their potential clinical applications, and display a wide variety of pharmacological and pharmacokinetic properties. Structurally distinct GAG chains can be prepared by enzymatic depolymerization. A variety of bacterial chondroitin sulfate (CS) lyases have been identified, and have been widely used as catalysts in this process. Here, we identified a putative chondroitin AC exolyase gene, AschnAC, from an Arthrobacter sp. strain found in a CS manufacturing workshop. We expressed the enzyme, AsChnAC, recombinantly in Escherichia coli, then purified and characterized it in vitro. The enzyme indeed displayed exolytic cleavage activity toward HA and various CSs. Removing the putative N-terminal secretion signal peptide of AsChnAC improved its expression level in E. coli while maintaining chondroitin AC exolyase activity. This novel catalyst exhibited its optimal activity in the absence of added metal ions. AsChnAC has potential applications in preparation of low-molecular weight GAGs, making it an attractive catalyst for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., et al. (Eds.). (2009). Essentials of glycobiology (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  2. DeAngelis, P. L., Liu, J., & Linhardt, R. J. (2013). Chemoenzymatic synthesis of glycosaminoglycans: Re-creating, re-modeling and re-designing nature’s longest or most complex carbohydrate chains. Glycobiology, 23(7), 764–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gandhi, N. S., & Mancera, R. L. (2008). The structure of glycosaminoglycans and their interactions with proteins. Chemical Biology & Drug Design, 72(6), 455–482. https://doi.org/10.1111/j.1747-0285.2008.00741.x.

    Article  CAS  Google Scholar 

  4. Taylor, K. R., & Gallo, R. L. (2006). Glycosaminoglycans and their proteoglycans: Host-associated molecular patterns for initiation and modulation of inflammation. The FASEB Journal, 20(1), 9–22. https://doi.org/10.1096/fj.05-4682rev.

    Article  CAS  PubMed  Google Scholar 

  5. Xu, D., & Esko, J. D. (2014). Demystifying heparan sulfate-protein interactions. Annual Review of Biochemistry, 83(1), 129–157. https://doi.org/10.1146/annurev-biochem-060713-035314.

    Article  CAS  PubMed  Google Scholar 

  6. Pantazaka, E., & Papadimitriou, E. (2014). Chondroitin sulfate-cell membrane effectors as regulators of growth factor-mediated vascular and cancer cell migration. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(8), 2643–2650. https://doi.org/10.1016/j.bbagen.2014.01.009.

    Article  CAS  Google Scholar 

  7. Li, P., Sheng, J., Liu, Y., Li, J., Liu, J., & Wang, F. (2013). Heparosan-derived heparan sulfate/heparin-like compounds: One kind of potential therapeutic agents. Medicinal Research Reviews, 33(3), 665–692. https://doi.org/10.1002/med.21263.

    Article  CAS  PubMed  Google Scholar 

  8. Li, L., Li, Y., Ijaz, M., Shahbaz, M., Lian, Q., & Wang, F. (2015). Review on complement analysis method and the roles of glycosaminoglycans in the complement system. Carbohydrate Polymers, 134, 590–597. https://doi.org/10.1016/j.carbpol.2015.08.028.

    Article  CAS  PubMed  Google Scholar 

  9. Migliore, A., & Procopio, S. (2015). Effectiveness and utility of hyaluronic acid in osteoarthritis. Clinical Cases in Mineral and Bone Metabolism, 12(1), 31–33. https://doi.org/10.11138/ccmbm/2015.12.1.031.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu, J., & Pedersen, L. C. (2006). Anticoagulant heparan sulfate: Structural specificity and biosynthesis. Applied Microbiology and Biotechnology, 74(2), 263–272. https://doi.org/10.1007/s00253-006-0722-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, Q., Li, J., Liu, C., Song, C., Li, P., Yin, F., et al. (2015). Protective effects of low molecular weight chondroitin sulfate on amyloid beta (Aβ)-induced damage in vitro and in vivo. Neuroscience, 305, 169–182. https://doi.org/10.1016/j.neuroscience.2015.08.002.

    Article  CAS  PubMed  Google Scholar 

  12. Bisio, A., Vecchietti, D., Citterio, L., Guerrini, M., Raman, R., Bertini, S., et al. (2009). Structural features of low-molecular-weight heparins affecting their affinity to antithrombin. Thrombosis and Haemostasis, 102(5), 865–873. https://doi.org/10.1160/TH09-02-0081.

    Article  CAS  PubMed  Google Scholar 

  13. Merli, G. J., & Groce, J. B. (2010). Pharmacological and clinical differences between low-molecular-weight heparins. Pharmacy and Therapeutics, 35(2), 95–105.

    PubMed  PubMed Central  Google Scholar 

  14. Pempe, E. H., Xu, Y., Gopalakrishnan, S., Liu, J., & Harris, E. N. (2012). Probing structural selectivity of synthetic heparin binding to stabilin protein receptors. The Journal of Biological Chemistry, 287(25), 20774–20783. https://doi.org/10.1074/jbc.M111.320069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ernst, S., Langer, R., Cooney, C. L., & Sasisekharan, R. (1995). Enzymatic degradation of glycosaminogIycans. Critical Reviews in Biochemistry and Molecular Biology, 30(5), 387–444. https://doi.org/10.3109/10409239509083490.

    Article  CAS  PubMed  Google Scholar 

  16. Lunin, V. V., Li, Y., Linhardt, R. J., Miyazono, H., Kyogashima, M., Kaneko, T., et al. (2004). High-resolution crystal structure of arthrobacter aurescens chondroitin AC Lyase: An enzyme-substrate complex defines the catalytic mechanism. Journal of Molecular Biology, 337(2), 367–386. https://doi.org/10.1016/j.jmb.2003.12.071.

    Article  CAS  PubMed  Google Scholar 

  17. Lombard, V., Bernard, T., Rancurel, C., Brumer, H., Coutinho, P. M., & Henrissat, B. (2010). A hierarchical classification of polysaccharide lyases for glycogenomics. The Biochemical Journal, 432(3), 437–444. https://doi.org/10.1042/BJ20101185.

    Article  CAS  PubMed  Google Scholar 

  18. Garron, M.-L., & Cygler, M. (2010). Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology, 20(12), 1547–1573. https://doi.org/10.1093/glycob/cwq122.

    Article  CAS  PubMed  Google Scholar 

  19. Linhardt, R. J., Avci, F. Y., Toida, T., Kim, Y. S., & Cygler, M. (2006). CS lyases: Structure, activity, and applications in analysis and the treatment of diseases. Advances in Pharmacology, 53, 187–215.

    Article  CAS  PubMed  Google Scholar 

  20. Hernáiz, M. J., & Linhardt, R. J. (2001). Degradation of chondroitin sulfate and dermatan sulfate with chondroitin lyases. Methods in Molecular Biology, 171, 363–371. https://doi.org/10.1385/1-59259-209-0:363.

    Article  PubMed  Google Scholar 

  21. Huang, W., Boju, L., Tkalec, L., Su, H., Yang, H. O., Gunay, N. S., et al. (2001). Active site of chondroitin AC lyase revealed by the structure of enzyme-oligosaccharide complexes and mutagenesis. Biochemistry, 40(8), 2359–2372.

    Article  CAS  PubMed  Google Scholar 

  22. Capila, I., Wu, Y., Rethwisch, D. W., Matte, A., Cygler, M., & Linhardt, R. J. (2002). Role of arginine 292 in the catalytic activity of chondroitin AC lyase from Flavobacterium heparinum. Biochimica et Biophysica Acta, 1597(2), 260–270.

    Article  CAS  PubMed  Google Scholar 

  23. Kale, V., Friðjónsson, Ó., Jónsson, J. Ó., Kristinsson, H. G., Ómarsdóttir, S., & Hreggviðsson, G. Ó. (2015). Chondroitin lyase from a marine Arthrobacter sp. MAT3885 for the production of chondroitin sulfate disaccharides. Marine Biotechnology, 17(4), 479–492. https://doi.org/10.1007/s10126-015-9629-9.

    Article  CAS  PubMed  Google Scholar 

  24. Fang, Y., Yang, S., Fu, X., Xie, W., Li, L., Liu, Z., et al. (2019). Expression, purification and characterization of chondroitinase AC II from marine bacterium Arthrobacter sp. CS01. Marine Drugs, 17(3), 185. https://doi.org/10.3390/md17030185.

    Article  CAS  PubMed Central  Google Scholar 

  25. Ke, T., Zhangfu, L., Qing, G., Yong, T., Hong, J., Hongyan, R., et al. (2005). Isolation of Serratia marcescens as a chondroitinase-producing bacterium and purification of a novel chondroitinase AC. Biotechnology Letters, 27(7), 489–493. https://doi.org/10.1007/s10529-005-2538-7.

    Article  CAS  PubMed  Google Scholar 

  26. Shim, K.-W., & Kim, D.-H. (2008). Cloning and expression of chondroitinase AC from bacteroides stercoris HJ-15. Protein Expression and Purification, 58(2), 222–228. https://doi.org/10.1016/j.pep.2007.11.014.

    Article  CAS  PubMed  Google Scholar 

  27. Yin, F.-X., Wang, F.-S., & Sheng, J.-Z. (2016). Uncovering the catalytic direction of chondroitin AC exolyase from the reducing end towards the non-reducing end. Journal of Biological Chemistry, 291(9), 4399–4406. https://doi.org/10.1074/jbc.C115.708396.

    Article  CAS  PubMed  Google Scholar 

  28. Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343–345. https://doi.org/10.1038/nmeth.1318.

    Article  CAS  Google Scholar 

  29. Wang, T.-T., Zhu, C.-Y., Zheng, S., Meng, C.-C., Wang, T.-T., Meng, D.-H., et al. (2018). Identification and characterization of a chondroitin synthase from Avibacterium paragallinarum. Applied Microbiology and Biotechnology, 102(11), 4785–4797. https://doi.org/10.1007/s00253-018-8926-4.

    Article  CAS  PubMed  Google Scholar 

  30. Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(W1), W320–W324. https://doi.org/10.1093/nar/gku316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., & Schwede, T. (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols, 4(1), 1–13. https://doi.org/10.1038/nprot.2008.197.

    Article  CAS  PubMed  Google Scholar 

  32. Maiti, R., Van Domselaar, G. H., Zhang, H., & Wishart, D. S. (2004). SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Research, 32, W590–W594. https://doi.org/10.1093/nar/gkh477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ochman, H., Gerber, A. S., & Hartl, D. L. (1988). Genetic applications of an inverse polymerase chain reaction. Genetics, 120(3), 621–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, K.-B., & Oh, S.-H. (2007). Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresource Technology, 98(2), 312–319. https://doi.org/10.1016/j.biortech.2006.01.004.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, Q., Liu, H.-C., Zhou, Y.-G., & Xin, Y.-H. (2019). Genetic diversity of glacier-inhabiting Cryobacterium bacteria in China and description of Cryobacterium zongtaii sp. nov. and Arthrobacter glacialis sp. nov. Systematic and Applied Microbiology, 42(2), 168–177. https://doi.org/10.1016/j.syapm.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  36. Castrignanò, T., DE Meo, P. D., Cozzetto, D., Talamo, I. G., & Tramontano, A. (2006). The PMDB protein model database. Nucleic Acids Research, 34(suppl_1), D306–D309. https://doi.org/10.1093/nar/gkj105.

    Article  CAS  PubMed  Google Scholar 

  37. Guo, X., Shi, Y., Sheng, J., & Wang, F. (2014). A novel hyaluronidase produced by Bacillus sp. A50. PLoS ONE, 9(4), e94156. https://doi.org/10.1371/journal.pone.0094156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 31770845)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Zheng Sheng.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LZ., Shi, CQ., Yin, FX. et al. Cloning and Characterization of a Chondroitin AC Exolyase from Arthrobacter sp. SD-04. Mol Biotechnol 61, 791–800 (2019). https://doi.org/10.1007/s12033-019-00208-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00208-z

Keywords

Navigation