Skip to main content

Advertisement

Log in

Modulating the Expression Strength of the Baculovirus/Insect Cell Expression System: A Toolbox Applied to the Human Tumor Suppressor SMARCB1/SNF5

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The human tumor suppressor SMARCB1/INI1/SNF5/BAF47 (SNF5) is a core subunit of the multi-subunit ATP-dependent chromatin remodeling complex SWI/SNF, also known as Brahma/Brahma-related gene 1 (BRM/BRG1)-associated factor (BAF). Experimental studies of SWI/SNF are currently considerably limited by the low cellular abundance of this complex; thus, recombinant protein production represents a key to obtain the SWI/SNF proteins for molecular and structural studies. While the expression of mammalian proteins in bacteria is often difficult, the baculovirus/insect cell expression system can overcome limitations of prokaryotic expression systems and facilitate the co-expression of multiple proteins. Here, we demonstrate that human full-length SNF5 tagged with a C-terminal 3 × FLAG can be expressed and purified from insect cell extracts in monomeric and dimeric forms. To this end, we constructed a set of donor and acceptor vectors for the expression of individual proteins and protein complexes in the baculovirus/insect cell expression system under the control of a polyhedrin (polh), p10, or a minimal Drosophila melanogaster Hsp70 promoter. We show that the SNF5 expression level could be modulated by the selection of the promoter used to control expression. The vector set also comprises vectors that encode a 3 × FLAG tag, Twin-Strep tag, or CBP-3 × FLAG-TEV-ProteinA triple tag to facilitate affinity selection and detection. By gel filtration and split-ubiquitin assays, we show that human full-length SNF5 has the ability to self-interact. Overall, the toolbox developed herein offers the possibility to flexibly select the promoter strength as well as the affinity tag and is suggested to advance the recombinant expression of chromatin remodeling factors and other challenging proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of the Toolbox

The toolbox will be deposited at the non-profit plasmid repository Addgene, and distributed to the scientific community.

Abbreviations

AcNPV:

Autographa californica nuclear polyhedrosis virus

ATP:

Adenosine triphosphate

BAF:

BRM/BRG1-associated factor

BAF47:

BRM/BRG1-associated factor 47

BRG1:

Brahma-related gene 1

BRM:

Brahma Abbreviations

CBP:

Calmodulin-binding peptide

CC:

Coiled coil

CE:

Cytoplasmic extract

DBD:

DNA-binding domain

DTT:

Dithiothreitol

E:

Elution fraction

EDTA:

Ethylenediaminetetraacetic acid

FBS:

Fetal bovine serum

FT:

Flow through

GST:

Glutathione S-transferase

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HSE:

Heat shock element

Hsp:

Heat shock protein

INI1:

Integrase interactor 1

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

kDa:

Kilo dalton

LB:

Lysogeny broth

M:

Marker

MBP:

Maltose-binding protein

MCS:

Multiple cloning site

MDa:

Mega dalton

NE:

Nuclear extract

NMDA:

N-methyl-d-aspartate

OD600 :

Optical density at 600 nm

ORF:

Open reading frame

PAGE:

Polyacrylamide gel electrophoresis

PCR:

Polymerase chain reaction

Polh :

Polyhedrin

P/S:

Penicillin/streptomycin

SD:

Synthetic defined

SDS:

Sodium dodecyl sulfate

SMARCB1:

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1

SNF5:

Sucrose Non Fermentable 5

SWI/SNF:

Switch/sucrose non-fermentable

TATA:

TATA box

TCA:

Trichloroacetic acid

TEV:

Tobacco etch virus

W:

Wash fraction

X-gal:

5-Bromo-4-chloro-3-indolyl-β-d-galactopyranoside

YFP:

Yellow fluorescent protein

References

  1. Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E., & Green, M. R. (1994). Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature, 370(6489), 477–481.

    Article  CAS  PubMed  Google Scholar 

  2. Imbalzano, A. N., Kwon, H., Green, M. R., & Kingston, R. E. (1994). Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature, 370(6489), 481–485.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, R., Liu, H., Chen, X., Kirby, M., Brown, P. O., & Zhao, K. (2001). Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell, 106(3), 309–318.

    Article  CAS  PubMed  Google Scholar 

  4. Peterson, C. L., Dingwall, A., & Scott, M. P. (1994). Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proceedings of National Academy of Science USA, 91(8), 2905–2908.

    Article  CAS  Google Scholar 

  5. Phelan, M. L., Sif, S., Narlikar, G. J., & Kingston, R. E. (1999). Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Molecular Cell, 3(2), 247–253.

    Article  CAS  PubMed  Google Scholar 

  6. Roberts, C. W., Galusha, S. A., McMenamin, M. E., Fletcher, C. D., & Orkin, S. H. (2000). Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proceedings of the National Academy Science USA, 97(25), 13796–13800.

    Article  CAS  Google Scholar 

  7. Klochendler-Yeivin, A., Fiette, L., Barra, J., Muchardt, C., Babinet, C., & Yaniv, M. (2000). The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Report, 1(6), 500–506.

    Article  CAS  Google Scholar 

  8. Roberts, C. W., Leroux, M. M., Fleming, M. D., & Orkin, S. H. (2002). Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell, 2(5), 415–425.

    Article  CAS  PubMed  Google Scholar 

  9. Miller, M. D., & Bushman, F. D. (1995). HIV integration. Ini1 for integration? Current Biology, 5(4), 368–370.

    Article  CAS  PubMed  Google Scholar 

  10. Versteege, I., Sévenet, N., Lange, J., Rousseau-Merck, M. F., Ambros, P., Handgretinger, R., … Delattre, O. (1998). Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature, 394(6689), 203–206.

    Article  CAS  PubMed  Google Scholar 

  11. Hulsebos, T. J., Plomp, A. S., Wolterman, R. A., Robanus-Maandag, E. C., Baas, F., & Wesseling, P. (2007). Germline mutation of INI1/SMARCB1 in familial schwannomatosis. American Journal of Human Genetics, 80(4), 805–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsurusaki, Y., Okamoto, N., Ohashi, H., Kosho, T., Imai, Y., Hibi-Ko, Y., … Fukushima, Y. (2012). Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nature Genetics, 44(4), 376–378.

    Article  CAS  PubMed  Google Scholar 

  13. Wieczorek, D., Bögershausen, N., Beleggia, F., Steiner-Haldenstätt, S., Pohl, E., Li, Y., … Alanay, Y. (2013). A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Human Molecular Genetics, 22(25), 5121–5135.

    Article  CAS  PubMed  Google Scholar 

  14. Taylor, M. D., Gokgoz, N., Andrulis, I. L., Mainprize, T. G., Drake, J. M., & Rutka, J. T. (2000). Familial posterior fossa brain tumors of infancy secondary to germline mutation of the hSNF5 gene. American Journal of Human Genetics, 66(4), 1403–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, D., Sohn, H., Kalpana, G. V., & Choe, J. (1999). Interaction of E1 and hSNF5 proteins stimulates replication of human papillomavirus DNA. Nature, 399(6735), 487–491.

    Article  CAS  PubMed  Google Scholar 

  16. Wu, D. Y., Kalpana, G. V., Goff, S. P., & Schubach, W. H. (1996). Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. Journal of Virology, 70(9), 6020–6028.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hwang, S., Lee, D., Gwack, Y., Min, H., & Choe, J. (2003). Kaposi’s sarcoma-associated herpesvirus K8 protein interacts with hSNF5. Journal of General Virology, 84(Pt 3), 665–676.

    Article  CAS  PubMed  Google Scholar 

  18. Morozov, A., Yung, E., & Kalpana, G. V. (1998). Structure-function analysis of integrase interactor 1/hSNF5L1 reveals differential properties of two repeat motifs present in the highly conserved region. Proceedings of National Academy Science USA, 95(3), 1120–1125.

    Article  CAS  Google Scholar 

  19. Das, S., Banerjee, B., Hossain, M., Thangamuniyandi, M., Dasgupta, S., Chongdar, N., … Basu, G. (2013). Characterization of DNA binding property of the HIV-1 host factor and tumor suppressor protein integrase interactor 1 (INI1/hSNF5). PLoS ONE 8(7), e66581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Das, S., Cano, J., & Kalpana, G. V. (2009). Multimerization and DNA binding properties of INI1/hSNF5 and its functional significance. Journal of Biological Chemistry, 284(30), 19903–19914.

    Article  CAS  PubMed  Google Scholar 

  21. Yan, L., Xie, S., Du, Y., & Qian, C. (2017). Structural insights into BAF47 and BAF155 complex formation. Journal of Molecular Biology, 429(11), 1650–1660.

    Article  CAS  PubMed  Google Scholar 

  22. Mesa, P., Deniaud, A., Montoya, G., & Schaffitzel, C. (2013). Directly from the source: Endogenous preparations of molecular machines. Current Opinion in Structure Biology, 23(3), 319–325.

    Article  CAS  Google Scholar 

  23. Vijayachandran, L. S., Viola, C., Garzoni, F., Trowitzsch, S., Bieniossek, C., Chaillet, M., … Richmond, T. J. (2011). Robots, pipelines, polyproteins: Enabling multiprotein expression in prokaryotic and eukaryotic cells. Journal of Structural Biology, 175(2), 198–208.

    Article  CAS  PubMed  Google Scholar 

  24. Rai, J., Pemmasani, J. K., Voronovsky, A., Jensen, I. S., Manavalan, A., Nyengaard, J. R., … Sander, B. (2014). Strep-tag II and Twin-Strep based cassettes for protein tagging by homologous recombination and characterization of endogenous macromolecular assemblies in Saccharomyces cerevisiae. Molecular Biotechnology, 56(11), 992–1003.

    Article  CAS  PubMed  Google Scholar 

  25. Lin, T. Y., Voronovsky, A., Raabe, M., Urlaub, H., Sander, B., & Golas, M. M. (2015). Dual tagging as an approach to isolate endogenous chromatin remodeling complexes from Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1854(3), 198–208.

    Article  CAS  PubMed  Google Scholar 

  26. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., & Séraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology, 17(10), 1030–1032.

    Article  CAS  PubMed  Google Scholar 

  27. Leonetti, M. D., Sekine, S., Kamiyama, D., Weissman, J. S., & Huang, B. (2016). A scalable strategy for high-throughput GFP tagging of endogenous human proteins. Proceedings of the National Academy Sciences USA, 113(25), E3501–E3508.

    Article  CAS  Google Scholar 

  28. Murray, V., Chen, J., Huang, Y., Li, Q., & Wang, J. (2010). Preparation of very-high-yield recombinant proteins using novel high-cell-density bacterial expression methods. Cold Spring Harbor Protocols, 2010(8), pdb-prot5475.

    Article  PubMed  Google Scholar 

  29. Dalton, A. C., & Barton, W. A. (2014). Over-expression of secreted proteins from mammalian cell lines. Protein Science, 23(5), 517–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He, Y., Wang, K., & Yan, N. (2014). The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein and Cell, 5(9), 658–672.

    Article  CAS  PubMed  Google Scholar 

  31. Peti, W., & Page, R. (2007). Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expression and Purification, 51(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  32. Correa, A., & Oppezzo, P. (2011). Tuning different expression parameters to achieve soluble recombinant proteins in E. coli: Advantages of high-throughput screening. Biotechnology Journal, 6(6), 715–730.

    Article  CAS  PubMed  Google Scholar 

  33. Brondyk, W. H. (2009). Selecting an appropriate method for expressing a recombinant protein. Methods Enzymology, 463, 131–147.

    Article  CAS  Google Scholar 

  34. Weidner, M., Taupp, M., & Hallam, S. J. (2010). Expression of recombinant proteins in the methylotrophic yeast Pichia pastoris. Journal of Visualized Experiments, 36, 1862.

    Google Scholar 

  35. Ahmad, M., Hirz, M., Pichler, H., & Schwab, H. (2014). Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 98(12), 5301–5317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bill, R. M. (2014). Playing catch-up with Escherichia coli: Using yeast to increase success rates in recombinant protein production experiments. Frontiers in Microbiology, 5, 85.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hacker, D. L., & Balasubramanian, S. (2016). Recombinant protein production from stable mammalian cell lines and pools. Current Opinion Structure Biology, 38, 129–136.

    Article  CAS  Google Scholar 

  38. Baser, B., & van den Heuvel, J. (2016). Assembling multi-subunit complexes using mammalian expression. Advances Experimental Medicine Biology, 896, 225–238.

    Article  CAS  Google Scholar 

  39. Dyson, M. R. (2016). Fundamentals of expression in mammalian cells. Advances Experimental Medicine Biology, 896, 217–224.

    Article  CAS  Google Scholar 

  40. van Oers, M. M., Pijlman, G. P., & Vlak, J. M. (2015). Thirty years of baculovirus-insect cell protein expression: From dark horse to mainstream technology. Journal of General Virology, 96(Pt 1), 6–23.

    Article  CAS  PubMed  Google Scholar 

  41. Miller, L. K. (1988). Baculoviruses for foreign gene expression in insect cells. Biotechnology, 10, 457–465.

    CAS  PubMed  Google Scholar 

  42. Li, J., Happ, B., Schetter, C., Oellig, C., Hauser, C., Kuroda, K., … Doerfler, W. (1990). The expression of the Autographa californica nuclear polyhedrosis virus genome in insect cells. Veterinary Microbiology, 23(1–4), 73–78.

    Article  CAS  PubMed  Google Scholar 

  43. Berger, I., Fitzgerald, D. J., & Richmond, T. J. (2004). Baculovirus expression system for heterologous multiprotein complexes. Nature Biotechnology, 22(12), 1583–1587.

    Article  CAS  PubMed  Google Scholar 

  44. Fitzgerald, D. J., Berger, P., Schaffitzel, C., Yamada, K., Richmond, T. J., & Berger, I. (2006). Protein complex expression by using multigene baculoviral vectors. Nature Methods, 3(12), 1021–1032.

    Article  CAS  PubMed  Google Scholar 

  45. Friesen, P. D., & Miller, L. K. (1985). Temporal regulation of baculovirus RNA: Overlapping early and late transcripts. Journal of Virology, 54(2), 392–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Knebel, D., Lübbert, H., & Doerfler, W. (1985). The promoter of the late p10 gene in the insect nuclear polyhedrosis virus Autographa californica: Activation by viral gene products and sensitivity to DNA methylation. EMBO Journal, 4(5), 1301–1306.

    Article  CAS  PubMed  Google Scholar 

  47. Smith, G. E., Summers, M. D., & Fraser, M. J. (1983). Production of human beta interferon in insect cells infected with a baculovirus expression vector. Molecular and Cellular Biology, 3(12), 2156–2165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pennock, G. D., Shoemaker, C., & Miller, L. K. (1984). Strong and regulated expression of Escherichia coli beta-galactosidase in insect cells with a baculovirus vector. Molecular and Cellular Biology, 4(3), 399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Inui, K., Zhao, Z., Yuan, J., Jayaprakash, S., Le, L. T., Drakulic, S., … Golas, M. M. (2017). Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target. Protein Science, 26(5), 997–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Le, L. T., Nyengaard, J. R., Golas, M. M., & Sander, B. (2018). Vectors for expression of signal peptide-dependent proteins in baculovirus/insect cell systems and their application to expression and purification of the high-affinity immunoglobulin gamma Fc receptor I in complex with its gamma chain. Molecular Biotechnology, 60(1), 31–40.

    Article  CAS  PubMed  Google Scholar 

  51. Karakas, E., & Furukawa, H. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science, 344(6187), 992–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johnsson, N., & Varshavsky, A. (1994). Split ubiquitin as a sensor of protein interactions in vivo. Proceedings of National Academy Science USA, 91(22), 10340–10344.

    Article  CAS  Google Scholar 

  53. Wellhausen, A., & Lehming, N. (1999). Analysis of the in vivo interaction between a basic repressor and an acidic activator. FEBS Letter, 453(3), 299–304.

    Article  CAS  Google Scholar 

  54. Zhao, X., Li, G., & Liang, S. (2013). Several affinity tags commonly used in chromatographic purification. Journal of Analytical Methods Chemistry, 2013, 8.

    Article  CAS  Google Scholar 

  55. Lichty, J. J., Malecki, J. L., Agnew, H. D., Michelson-Horowitz, D. J., & Tan, S. (2005). Comparison of affinity tags for protein purification. Protein Expression Purification, 41(1), 98–105.

    Article  CAS  PubMed  Google Scholar 

  56. Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R., & Stüber, D. (1988). Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nature Biotechnology, 6(11), 1321–1325.

    Article  CAS  Google Scholar 

  57. Hopp, T. P., Prickett, K. S., Price, V. L., Libby, R. T., March, C. J., Cerretti, D. P., … Conlon, P. J. (1988). A short polypeptide marker sequence useful for recombinant protein identification and purification. Nature Biotechnology, 6, 1204–1210.

    Article  CAS  Google Scholar 

  58. Einhauer, A., & Jungbauer, A. (2001). The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. Journal of Biochemical Biophysical Methods, 49(1–3), 455–465.

    Article  CAS  PubMed  Google Scholar 

  59. Maroux, S., Baratti, J., & Desnuelle, P. (1971). Purification and specificity of porcine enterokinase. Journal of Biological and Chemistry, 246(16), 5031–5039.

    CAS  Google Scholar 

  60. Brizzard, B. L., Chubet, R. G., & Vizard, D. L. (1994). Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution. BioTechniques, 16(4), 730–735.

    CAS  PubMed  Google Scholar 

  61. Junttila, M. R., Saarinen, S., Schmidt, T., Kast, J., & Westermarck, J. (2005). Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics, 5(5), 1199–1203.

    Article  CAS  PubMed  Google Scholar 

  62. Voss, S., & Skerra, A. (1997). Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Engineering, 10(8), 975–982.

    Article  CAS  PubMed  Google Scholar 

  63. Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B., & Crabtree, G. R. (1993). BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature, 366(6451), 170–174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Susanne Stubbe and Golshah Ayoubi for expert technical assistance, and Srdja Drakulic for support with some of the experiments. We are grateful for the access to experimental facilities at the Danish Neuroscience Centre House, Aarhus University, Denmark. This study was supported by the Sapere Aude Program of the Danish Council for Independent Research, the Lundbeck Foundation’s Fellowship Program, the A.P. Møller Foundation for the Advancement of Medical Sciences, and the Carlsbergfondet to MMG. ISJ was supported by a fellowship of the Graduate School of Health, Aarhus University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika M. Golas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 80 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golas, M.M., Jayaprakash, S., Le, L.T.M. et al. Modulating the Expression Strength of the Baculovirus/Insect Cell Expression System: A Toolbox Applied to the Human Tumor Suppressor SMARCB1/SNF5. Mol Biotechnol 60, 820–832 (2018). https://doi.org/10.1007/s12033-018-0107-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0107-2

Keywords

Navigation