Skip to main content

Advertisement

Log in

Stable Expression of Adalimumab in Nicotiana tabacum

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Production of monoclonal antibodies and pharmaceutical proteins in transgenic plants has been the focus of many research efforts for close to 30 years. Use of plants as bioreactors reduces large-scale production costs and minimizes risk for human pathogens contamination. Stable nuclear transformation of the plant genome offers a clear advantage in agricultural protein production platforms, limited only by the number of hectares that can be cultivated. We report here, for the first time, successful and stable expression of adalimumab in transgenic Nicotiana tabacum plants. The plant-derived adalimumab proved fully active and was shown to rescue L929 cells from the in vitro lethal effect of rhTNFα just as effectively as commercially available CHO-derived adalimumab (Humira). These results indicate that agricultural biopharming is an efficient alternative to mammalian cell-based expression platforms for the large-scale production of recombinant antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stoger, E., Sack, M., Fischer, R., & Christou, P. (2002). Plantibodies: Applications, advantages and bottlenecks. Current Opinion in Biotechnology, 13, 161–166. https://doi.org/10.1016/S0958-1669(02)00303-8.

    Article  CAS  PubMed  Google Scholar 

  2. Schillberg, S., Twyman, R. M., & Fischer, R. (2005). Opportunities for recombinant antigen and antibody expression in transgenic plants technology assessment. Vaccine, 23, 1764–1769. https://doi.org/10.1016/j.vaccine.2004.11.002.

    Article  CAS  PubMed  Google Scholar 

  3. Fahad, S., Khan, F. A., Pandupuspitasari, N. S., et al. (2014). Recent developments in therapeutic protein expression technologies in plants. Biotechnology Letters, 37, 265–279. https://doi.org/10.1007/s10529-014-1699-7.

    Article  CAS  PubMed  Google Scholar 

  4. Fischer, R., Stoger, E., Schillberg, S., et al. (2004). Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology, 7, 152–158. https://doi.org/10.1016/j.pbi.2004.01.007.

    Article  CAS  PubMed  Google Scholar 

  5. Hiatt, A., & Cafferkey, R. B. K. (1989). Production of antibodies in transgenic plants. Nature, 342, 76–78.

    Article  CAS  PubMed  Google Scholar 

  6. Gomord, V., Chamberlain, P., Jefferis, R., & Faye, L. (2005). Biopharmaceutical production in plants: Problems, solutions and opportunities. Trends in Biotechnology, 23, 559–565. https://doi.org/10.1016/j.tibtech.2005.09.003.

    Article  CAS  PubMed  Google Scholar 

  7. Goldstein, D. A., & Thomas, J. A. (2004). Biopharmaceuticals derived from genetically modified plants. QJM: Monthly Journal of the Association of Physicians, 97, 705–716. https://doi.org/10.1093/qjmed/hch121.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, Z., Phoolcharoen, W., Lai, H., et al. (2010). High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system, 106, 9–17. https://doi.org/10.1002/bit.22652.

    Article  CAS  Google Scholar 

  9. Daniell, H., Streatfield, S. J., & Wycoff, K. (2001). Medical molecular farming: Production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends in Plant Science, 6, 219. https://doi.org/10.1016/S1360-1385(01)01922-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Twyman, R. M., Stoger, E., Schillberg, S., et al. (2003). Molecular farming in plants: Host systems and expression technology. Trends in Biotechnology, 21, 570–578. https://doi.org/10.1016/j.tibtech.2003.10.002.

    Article  CAS  PubMed  Google Scholar 

  11. Sack, M., Hofbauer, A., Fischer, R., & Stoger, E. (2015). The increasing value of plant-made proteins. Current Opinion in Biotechnology, 32, 163–170. https://doi.org/10.1016/j.copbio.2014.12.008.

    Article  CAS  PubMed  Google Scholar 

  12. Liénard, D., Sourrouille, C., Gomord, V., & Faye, L. (2007). Pharming and transgenic plants. Biotechnology Annual Review, 13, 115–147. https://doi.org/10.1016/S1387-2656(07)13006-4.

    Article  CAS  PubMed  Google Scholar 

  13. Yusibov, V., Kushnir, N., & Streatfield, S. J. (2016). Antibody production in plants and green algae. Annual Review of Plant Biology, 67, 669–701. https://doi.org/10.1146/annurev-arplant-043015-111812.

    Article  CAS  PubMed  Google Scholar 

  14. Paul, M., Van, Dolleweerd C., Drake, P. M. W., et al. (2011). Future targets and aspirations. Molecular pharming. Human Vaccines. https://doi.org/10.4161/HV.7.3.14456.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fischer, R., Twyman, R. M., & Schillberg, S. (2003). Production of antibodies in plants and their use for global health. Vaccine, 21, 820–825. https://doi.org/10.1016/S0264-410X(02)00607-2.

    Article  CAS  PubMed  Google Scholar 

  16. Twyman, R. M., Schillberg, S., & Fischer, R. (2008). Production of therapeutic antibodies in plants. Medicinal Plant Biotechnology: From Basic Research to Industrial Applications. https://doi.org/10.1002/9783527619771.ch14.

    Article  Google Scholar 

  17. Goldstein, D. A., & Thomas, J. A. (2004). Review Biopharmaceuticals derived from genetically modified plants. QJM, 97, 705–716. https://doi.org/10.1093/qjmed/hch121.

    Article  CAS  PubMed  Google Scholar 

  18. Fischer, R., & Emans, N. (2000). Molecular farming of pharmaceutical proteins. Transgenic Research, 9, 279–299. https://doi.org/10.1023/A:1008975123362.

    Article  CAS  PubMed  Google Scholar 

  19. Westerhof, L. B., Wilbers, R. H. P., van Raaij, D. R., et al. (2014). Monomeric IgA can be produced in planta as efficient as IgG, yet receives different N-glycans. Plant Biotechnology Journal, 12, 1333–1342. https://doi.org/10.1111/pbi.12251.

    Article  CAS  PubMed  Google Scholar 

  20. Decker, T., & Gifford, G. E. (1987). Cell-associated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic Information about subscribing to The Journal of Immunology is online at: Mechanism of activated cytotoxic macrophages. Journal of Immunology, 138, 957–962.

    CAS  Google Scholar 

  21. Mitoma, H., Horiuchi, T., Tsukamoto, H., et al. (2008). Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor α-expressing cells: Comparison among infliximab, etanercept, and adalimumab. Arthritis and Rheumatism, 58, 1248–1257. https://doi.org/10.1002/art.23447.

    Article  CAS  PubMed  Google Scholar 

  22. Bazzoni, F., & Beutler, B. (1996). The tumor necrosis factor ligand and receptor families. The New England Journal Of Medicine, 334, 1717–1725.

    Article  CAS  PubMed  Google Scholar 

  23. Committee for Proprietary Medicinal Products. (2004). Humira—European public assessment reports. Scientific discussion (pp. 1–25).

  24. Shani, Z., Dekel, M., Tsabary, G., & Shoseyov, O. (1997). Cloning and characterization of elongation specific endo-1,4-β-glucanase (cel1) from Arabidopsis thaliana. Plant Molecular Biology, 34, 837–842.

    Article  CAS  PubMed  Google Scholar 

  25. Grohs, B., Niu, Y., Veldhuis, L., et al. (2010). Plant-produced trastuzumab inhibits the growth of HER2 positive cancer cells. Journal of Agriculture and Food Chemistry. https://doi.org/10.1021/jf102284f.

    Article  Google Scholar 

  26. Ma, J. K. C., Drossard, J., Lewis, D., et al. (2015). Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnology Journal, 13, 1106–1120. https://doi.org/10.1111/pbi.12416.

    Article  CAS  PubMed  Google Scholar 

  27. Wilken, L. R., & Nikolov, Z. L. (2012). Recovery and purification of plant-made recombinant proteins. Biotechnology Advances, 30, 419–433. https://doi.org/10.1016/j.biotechadv.2011.07.020.

    Article  CAS  PubMed  Google Scholar 

  28. Bouquin, T., Thomsen, M., Nielsen, L. K., et al. (2002). Human anti-Rhesus D IgG1 antibody produced in transgenic plants. Transgenic Research, 11, 115–122. https://doi.org/10.1023/A:1015226418688.

    Article  CAS  PubMed  Google Scholar 

  29. Aalberse, R. C., Akkerdaas, J. H., & Van Ree, R. (2001). Cross-reactivity of IgE antibodies to allergens. Allergy, 56, 478–490. https://doi.org/10.1016/S0091-6749(97)70245-8.

    Article  CAS  PubMed  Google Scholar 

  30. Bardor, M., Faveeuw, C., Fitchette, A.-C., et al. (2003). Immunoreactivity in mammals of two typical plant glyco-epitopes, core alpha(1,3)-fucose and core xylose. Glycobiology, 13, 427–434. https://doi.org/10.1093/glycob/cwg024.

    Article  CAS  PubMed  Google Scholar 

  31. Gomord, V. (2004). Production and glycosylation of plant-made pharmaceuticals: The antibodies as a challenge. Plant Biotechnology Journal, 2, 83–100. https://doi.org/10.1111/j.1467-7652.2004.00062.x.

    Article  CAS  PubMed  Google Scholar 

  32. Stein, H., Wilensky, M., Tsafrir, Y., et al. (2009). Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco. Biomacromolecules, 3, 2640–2645.

    Article  CAS  Google Scholar 

  33. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (1987). Protocols in molecular biology. New York, NY: Greene Publishing Associates and Wiley-Interscience John Wiley and Sons.

Download references

Acknowledgements

We thank Dr. Meirav Blanka for her help in the development of the quantitative ELISA and Dr. Yehudit Posen for critically reviewing this manuscript. This study was supported by the Minerva Center for bio-hybrid complex system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Shoseyov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvirin, T., Magrisso, L., Yaari, A. et al. Stable Expression of Adalimumab in Nicotiana tabacum. Mol Biotechnol 60, 387–395 (2018). https://doi.org/10.1007/s12033-018-0075-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0075-6

Keywords

Navigation