Skip to main content

Advertisement

Log in

Insights into the Synergistic Biodegradation of Waste Papers Using a Combination of Thermostable Endoglucanase and Cellobiohydrolase from Chaetomium thermophilum

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis is considered an efficient and environmental strategy for the degradation of organic waste materials. Compared to mesophilic cellulases, thermostable cellulases with considerable activity are more advantageous in waste paper hydrolysis, particularly in terms of their participation in synergistic action. In this study, the synergistic effect of two different types of thermostable Chaetomium thermophilum cellulases, the endoglucanase CTendo45 and the cellobiohydrolase CtCel6, on five common kinds of waste papers was investigated. CtCel6 significantly enhanced the bioconversion process, and CTendo45 synergistically increased the degradation, with a maximum degree of synergistic effect of 1.67 when the mass ratio of CTendo45/CtCel6 was 5:3. The synergistic degradation products of each paper material were also determined. Additionally, the activities of CTendo45 and CtCel6 were found to be insensitive to various metals at 2 mM and 10 mM ion concentrations. This study gives an initial insight into a satisfactory synergistic effect of C. thermophilum thermostable cellulases for the hydrolysis of different paper materials, which provides a potential combination of enzymes for industrial applications, including environmentally friendly waste management and cellulosic ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu, D. Y., Zhang, R. F., Yang, X. M., Wu, H. S., Xu, D. B., et al. (2011). Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. International Biodeterioration and Biodegradation, 65, 717–725.

    Article  CAS  Google Scholar 

  2. Eisted, R., & Christensen, T. H. (2011). Characterization of household waste in Greenland. Waste Management, 31, 1461–1466.

    Article  CAS  Google Scholar 

  3. Elliston, A., Collins, S. R. A., Faulds, C. B., Roberts, I. N., & Waldron, K. W. (2014). Biorefining of waste paper biomass: increasing the concentration of glucose by optimising enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 172, 3621.

    Article  CAS  Google Scholar 

  4. Ervasti, I., Miranda, R., & Kauranen, I. (2016). A global, comprehensive review of literature related to paper recycling: A pressing need for a uniform system of terms and definitions. Waste Management, 48, 64–71.

    Article  Google Scholar 

  5. Pivnenko, K., Eriksson, E., & Astrup, T. F. (2015). Waste paper for recycling: Overview and identification of potentially critical substances. Waste Management, 45, 134–142.

    Article  CAS  Google Scholar 

  6. Biedermann, M., Ingenhoff, J. E., Zurfluh, M., Richter, L., Simat, T., et al. (2013). Migration of mineral oil, photoinitiators and plasticisers from recycled paperboard into dry foods: A study under controlled conditions. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment, 30, 885–898.

    Article  CAS  Google Scholar 

  7. Lorenzini, R., Biedermann, M., Grob, K., Garbini, D., Barbanera, M., et al. (2013). Migration kinetics of mineral oil hydrocarbons from recycled paperboard to dry food: monitoring of two real cases. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment, 30, 760–770.

    Article  CAS  Google Scholar 

  8. Rojo, E. S., Ramos, M., Yates, M., Ma, M. L., Serrano, A. M. M., et al. (2014). Preparation, characterization and in vitro osteoblast growth of waste-derived biomaterials. RSC Advances, 4, 12630–12639.

    Article  CAS  Google Scholar 

  9. Wang, L., Sharifzadeh, M., Templer, R., & Murphy, R. J. (2013). Bioethanol production from various waste papers: Economic feasibility and sensitivity analysis. Applied Energy, 111, 1172–1182.

    Article  CAS  Google Scholar 

  10. Shi, A. Z., Koh, L. P., & Tan, H. T. W. (2009). The biofuel potential of municipal solid waste. Global Change Biology Bioenergy, 1, 317–320.

    Article  CAS  Google Scholar 

  11. Manente, S., Micheluz, A., Ganzerla, R., Ravagnan, G., & Gambaro, A. (2012). Chemical and biological characterization of paper: A case study using a proposed methodological approach. International Biodeterioration and Biodegradation, 74, 99–108.

    Article  CAS  Google Scholar 

  12. Huy, N. D., Nguyen, C. L., Park, H. S., Loc, N. H., Choi, M. S., et al. (2016). Characterization of a novel manganese dependent endoglucanase belongs in GH family 5 from Phanerochaete chrysosporium. Journal of Bioscience and Bioengineering, 121, 154–159.

    Article  CAS  Google Scholar 

  13. Akimkulova, A., Zhou, Y., Zhao, X., & Liu, D. (2016). Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin. Bioresource Technology, 208, 110–116.

    Article  CAS  Google Scholar 

  14. Liang, F. B., Song, Y. L., Huang, C. P., Li, Y. X., & Chen, B. H. (2013). Synthesis of novel lignin-based ion-exchange resin and its utilization in heavy metals removal. Industrial and Engineering Chemistry Research, 52, 1267–1274.

    Article  CAS  Google Scholar 

  15. Zhou, Q. Z., Ji, P., Zhang, J. Y., & Han, C. (2017). Characterization of a novel thermostable GH45 endoglucanase from Chaetomium thermophilum and its biodegradation of pectin. Journal of Bioscience and Bioengineering, 124, 271–276.

    Article  CAS  Google Scholar 

  16. Zhou, Q. Z., Jia, J. C., Ji, P., & Han, C. (2017). A novel application potential of GH6 cellobiohydrolase CtCel6 from thermophilic Chaetomium thermophilum for gene cloning, heterologous expression and biological characterization. International Journal of Agriculture and Biology, 19, 355–362.

    Article  Google Scholar 

  17. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  18. Meleiro, L. P., Zimbardi, A. L., Souza, F. H., Masui, D. C., Silva, T. M., et al. (2014). A novel β-glucosidase from Humicola insolens with high potential for untreated waste paper conversion to sugars. Applied Biochemistry and Biotechnology, 173, 391–408.

    Article  CAS  Google Scholar 

  19. Zhang, X. Z., Sathitsuksanoh, N., & Zhang, Y. H. (2010). Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: heterologous expression, characterization, and synergy with family 48 cellobiohydrolase. Bioresource Technology, 101, 5534–5538.

    Article  CAS  Google Scholar 

  20. Karnaouri, A. C., Topakas, E., & Christakopoulos, P. (2014). Cloning, expression, and characterization of a thermostable GH7 endoglucanase from Myceliophthora thermophila capable of high-consistency enzymatic liquefaction. Applied Biochemistry and Biotechnology, 98, 231–242.

    CAS  Google Scholar 

  21. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., et al. (2006). The path forward for biofuels and biomaterials. Science, 311, 484–489.

    Article  CAS  Google Scholar 

  22. Chen, H., Han, Q., Venditti, R. A., & Jameel, H. (2015). Enzymatic hydrolysis of pretreated newspaper having high lignin content for bioethanol production. BioResources, 10, 4077–4098.

    CAS  Google Scholar 

  23. Matkar, K., Chapla, D., Divecha, J., Nighojkar, A., & Madamwar, D. (2013). Production of cellulase by a newly isolated strain of Aspergillus sydowii and its optimization under submerged fermentation. International Biodeterioration and Biodegradation, 78, 24–33.

    Article  CAS  Google Scholar 

  24. Xin, F., Geng, A., Chen, M. L., & Gum, M. J. (2010). Enzymatic hydrolysis of sodium dodecyl sulphate (SDS)-pretreated newspaper for cellulosic ethanol production by Saccharomyces cerevisiae and Pichia stipitis. Applied Biochemistry and Biotechnology, 162, 1052–1064.

    Article  CAS  Google Scholar 

  25. van Wyk, J. P., & Mohulatsi, M. (2003). Biodegradation of wastepaper by cellulase from Trichoderma viride. Bioresource Technology, 86, 21–23.

    Article  Google Scholar 

  26. Lee, R. L., Paul, J. W., Willem, H. Z., & Isak, S. P. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  Google Scholar 

  27. Singhania, R. R., Patel, A. K., Pandey, A., & Ganansounou, E. (2017). Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.05.126.

    Google Scholar 

  28. da Silva, V. M., Sato, J. A. P., Araujo, J. N., Squina, F. M., Muniz, J. R. C., et al. (2017). Systematic studies of the interactions between a model polyphenol compound and microbial β-glucosidases. PLoS ONE, 12, e0181629.

    Article  Google Scholar 

  29. Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 127, 500–507.

    Article  CAS  Google Scholar 

  30. Chu, K. H., & Feng, X. (2013). Enzymatic conversion of newspaper and office paper to fermentable sugars. Process Safety and Environmental Protection, 91, 123–130.

    Article  CAS  Google Scholar 

  31. Wang, L., Templer, R., & Murphy, R. J. (2012). High-solids loading enzymatic hydrolysis of waste papers for biofuel production. Applied Energy, 99, 23–31.

    Article  CAS  Google Scholar 

  32. Lee, D. H., Cho, E. Y., Kim, C. J., & Kim, S. B. (2010). Pretreatment of waste newspaper using ethylene glycol for bioethanol production. Biotechnology and Bioprocess Engineering, 15, 1094–1101.

    Article  CAS  Google Scholar 

  33. Shi, H., Zhang, Y., Xu, B., Tu, M., & Wang, F. (2014). Characterization of a novel GH2 family α-L-arabinofuranosidase from hyperthermophilic bacterium Thermotoga thermarum. Biotechnology Letters, 36, 1321–1328.

    Article  CAS  Google Scholar 

  34. Verma, D., & Satyanarayana, T. (2012). Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresource Technology, 107, 333–338.

    Article  CAS  Google Scholar 

  35. Pinzari, L., Zotti, Z. M., Mico, A. D., & Calvini, P. (2010). Biodegradation of inorganic components in paper documents: Formation of calcium oxalate crystals as a consequence of Aspergillus terreus Thom growth. International Biodeterioration and Biodegradation, 64, 499–505.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Prof. Duochuan Li from Shandong Agricultural University for technical assistance. This research was supported by National Key Technology R&D Program of China (Grant No. 2015BAD15B05) and Funds of Shandong Double Tops Program (Grant No. SYL2017XTTD11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Ji, P., Zhou, Q. et al. Insights into the Synergistic Biodegradation of Waste Papers Using a Combination of Thermostable Endoglucanase and Cellobiohydrolase from Chaetomium thermophilum . Mol Biotechnol 60, 49–54 (2018). https://doi.org/10.1007/s12033-017-0043-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0043-6

Keywords

Navigation