Skip to main content
Log in

Deleting the Ig-Like Domain of Alicyclobacillus acidocaldarius Endoglucanase Cel9A Causes a Simultaneous Increase in the Activity and Stability

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Endoglucanase Cel9A from Alicyclobacillus acidocaldarius (AaCel9A) is a monomeric enzyme with 537 residues. This enzyme has an Ig-like domain in the N-terminus of the catalytic domain. In this study, the role of the Ig-like domain on the activity, stability, and structural rigidity of AaCel9A and the effect of calcium on enzyme activity and stability were examined by comparing a truncated enzyme with deletion of the Ig-like domain (AaCel9AΔN) to the wild-type enzyme. Our results showed that the deletion of the Ig-like domain increased the catalytic efficiency of the truncated enzyme up to threefold without any significant changes in the K m of the enzyme. Furthermore, pH and temperature optimum for activity were shifted from 6.5 to 7.5 and from 65 to 60 °C, respectively, by deletion of the Ig-like domain. The thermal stability and fluorescence quenching results indicated that the stability and rigidity of the truncated enzyme have been more than that of the wild-type enzyme. Calcium similarly increased the catalytic efficiency of the enzymes (up to 40 %) and remarkably raised the stability of the AaCel9A compared to the AaCel9AΔN. This shows that Ig-like domain has a role in the increase of the enzyme stability by calcium in the wild-type enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AaCel9A:

Alicyclobacillus acidocaldarius endoglucanase Cel9A

AaCel9AΔN:

AaCel9A without Ig-like domain

CBD:

carbohydrate binding domain

CMC:

Carboxymethylcellulose

DNS:

3,5-Dinitrosalicylic acid

GH:

Glycoside hydrolase

Ig-like:

Immunoglobulin- like

References

  1. Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135, 191–198.

    Article  CAS  Google Scholar 

  2. Ho, S. H., Chen, C. Y., Lee, D. J., & Chang, J. S. (2011). Perspectives on microalgal CO(2)-emission mitigation systems–a review. Biotechnology Advances, 29, 189–198.

    Article  CAS  Google Scholar 

  3. Mussatto, S. I., Dragone, G., Guimaraes, P. M., Silva, J. P., Carneiro, L. M., Roberto, I. C., et al. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28, 817–830.

    Article  CAS  Google Scholar 

  4. John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technology, 102, 186–193.

    Article  CAS  Google Scholar 

  5. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577. table of contents.

    Article  CAS  Google Scholar 

  6. Hong, S. M., Sung, H. S., Kang, M. H., Kim, C. G., Lee, Y. H., Kim, D. J., et al. (2014). Characterization of Cryptopygus antarcticus endo-beta-1,4-glucanase from Bombyx mori expression systems. Molecular Biotechnology, 56, 878–889.

    Article  CAS  Google Scholar 

  7. Tanghe, M., Danneels, B., Camattari, A., Glieder, A., Vandenberghe, I., Devreese, B., et al. (2015). Recombinant Expression of Trichoderma reesei Cel61A in Pichia pastoris: Optimizing Yield and N-terminal Processing. Molecular Biotechnology. doi:10.1007/s12033-015-9887-9.

    Google Scholar 

  8. Hemsworth, G. R., Henrissat, B., Davies, G. J., & Walton, P. H. (2014). Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nature Chemical Biology, 10, 122–126.

    Article  CAS  Google Scholar 

  9. Tomme, P., Driver, D. P., Amandoron, E. A., Miller, R. C, Jr, Antony, R., Warren, J., & Kilburn, D. G. (1995). Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. Journal of Bacteriology, 177, 4356–4363.

    CAS  Google Scholar 

  10. Kataeva, I. A., Seidel, R. D, 3rd, Li, X. L., & Ljungdahl, L. G. (2001). Properties and mutation analysis of the CelK cellulose-binding domain from the Clostridium thermocellum cellulosome. Journal of Bacteriology, 183, 1552–1559.

    Article  CAS  Google Scholar 

  11. Telke, A. A., Ghatge, S. S., Kang, S. H., Thangapandian, S., Lee, K. W., Shin, H. D., et al. (2012). Construction and characterization of chimeric cellulases with enhanced catalytic activity towards insoluble cellulosic substrates. Bioresource Technology, 112, 10–17.

    Article  CAS  Google Scholar 

  12. Barclay, A. N. (1999). Ig-like domains: evolution from simple interaction molecules to sophisticated antigen recognition. Proceedings of the National Academy of Sciences, 96, 14672–14674.

    Article  CAS  Google Scholar 

  13. Bodelon, G., Palomino, C., & Fernandez, L. A. (2013). Immunoglobulin domains in Escherichia coli and other enterobacteria: from pathogenesis to applications in antibody technologies. FEMS Microbiology Reviews, 37, 204–250.

    Article  CAS  Google Scholar 

  14. Kataeva, I. A., Seidel, R. D, 3rd, Shah, A., West, L. T., Li, X. L., & Ljungdahl, L. G. (2002). The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolase CbhA promotes hydrolysis of cellulose by modifying its surface. Applied and Environment Microbiology, 68, 4292–4300.

    Article  CAS  Google Scholar 

  15. Kataeva, I. A., Uversky, V. N., Brewer, J. M., Schubot, F., Rose, J. P., Wang, B. C., & Ljungdahl, L. G. (2004). Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Protein Engineering, Design and Selection, 17, 759–769.

    Article  CAS  Google Scholar 

  16. Cheng, R., Chen, J., Yu, X., Wang, Y., Wang, S., & Zhang, J. (2013). production and characterization of full-length and truncated beta-1,3-glucanase PglA from Paenibacillus sp. S09. BMC Biotechnology, 13, 105.

    Article  CAS  Google Scholar 

  17. Schubot, F. D., Kataeva, I. A., Chang, J., Shah, A. K., Ljungdahl, L. G., Rose, J. P., & Wang, B. C. (2004). Structural basis for the exocellulase activity of the cellobiohydrolase CbhA from Clostridium thermocellum. Biochemistry, 43, 1163–1170.

    Article  CAS  Google Scholar 

  18. Verjans, P., Dornez, E., Segers, M., Van Campenhout, S., Bernaerts, K., Belien, T., et al. (2010). Truncated derivatives of a multidomain thermophilic glycosyl hydrolase family 10 xylanase from Thermotoga maritima reveal structure related activity profiles and substrate hydrolysis patterns. Journal of Biotechnology, 145, 160–167.

    Article  CAS  Google Scholar 

  19. Eckert, K., Vigouroux, A., Lo Leggio, L., & Morera, S. (2009). Crystal structures of A. acidocaldarius endoglucanase Cel9A in complex with cello-oligosaccharides: strong -1 and -2 subsites mimic cellobiohydrolase activity. Journal of Molecular Biology, 394, 61–70.

    Article  CAS  Google Scholar 

  20. Beguin, P. (1990). Molecular biology of cellulose degradation. Annual Review of Microbiology, 44, 219–248.

    Article  CAS  Google Scholar 

  21. Bayer, E. A., Shoham, Y., & Lamed, R. (2006). Cellulose-decomposing bacteria and their enzyme systems. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes (pp. 578–617). New York: Springer.

    Chapter  Google Scholar 

  22. Eckert, K., Zielinski, F., Lo Leggio, L., & Schneider, E. (2002). Gene cloning, sequencing, and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009. Applied Microbiology and Biotechnology, 60, 428–436.

    Article  CAS  Google Scholar 

  23. Pereira, J. H., Sapra, R., Volponi, J. V., Kozina, C. L., Simmons, B., & Adams, P. D. (2009). Structure of endoglucanase Cel9A from the thermoacidophilic Alicyclobacillus acidocaldarius. Acta Crystallographica. Section D, Biological Crystallography, 65, 744–750.

    Article  CAS  Google Scholar 

  24. Liu, H., Pereira, J. H., Adams, P. D., Sapra, R., Simmons, B. A., & Sale, K. L. (2010). Molecular simulations provide new insights into the role of the accessory immunoglobulin-like domain of Cel9A. FEBS Letters, 584, 3431–3435.

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  26. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  27. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  28. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  29. Han, Q., Liu, N., Robinson, H., Cao, L., Qian, C., Wang, Q., et al. (2013). Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig-like domain. Biotechnology and Bioengineering, 110, 3093–3103.

    Article  CAS  Google Scholar 

  30. Kataeva, I. A., Blum, D. L., Li, X. L., & Ljungdahl, L. G. (2001). Do domain interactions of glycosyl hydrolases from Clostridium thermocellum contribute to protein thermostability? Protein Engineering, 14, 167–172.

    Article  CAS  Google Scholar 

  31. Couturier, M., Feliu, J., Haon, M., Navarro, D., Lesage-Meessen, L., Coutinho, P. M., & Berrin, J. G. (2011). A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity. Microbial Cell Factories, 10, 103.

    Article  CAS  Google Scholar 

  32. Liu, G., Qin, Y., Hu, Y., Gao, M., Peng, S., & Qu, Y. (2013). An endo-1,4-beta-glucanase PdCel5C from cellulolytic fungus Penicillium decumbens with distinctive domain composition and hydrolysis product profile. Enyzme and Microbial Technology, 52, 190–195.

    Article  CAS  Google Scholar 

  33. Wang, Y., Yuan, H., Wang, J., & Yu, Z. (2009). Truncation of the cellulose binding domain improved thermal stability of endo-beta-1,4-glucanase from Bacillus subtilis JA18. Bioresource Technology, 100, 345–349.

    Article  CAS  Google Scholar 

  34. Bork, P., Holm, L., & Sander, C. (1994). The immunoglobulin fold. Structural classification, sequence patterns and common core. Journal of Molecular Biology, 242, 309–320.

    CAS  Google Scholar 

  35. Shoichet, B. K., Baase, W. A., Kuroki, R., & Matthews, B. W. (1995). A relationship between protein stability and protein function. Proceedings of the National Academy of Sciences, 92, 452–456.

    Article  CAS  Google Scholar 

  36. Fraser, J. S., Clarkson, M. W., Degnan, S. C., Erion, R., Kern, D., & Alber, T. (2009). Hidden alternative structures of proline isomerase essential for catalysis. Nature, 462, 669–673.

    Article  CAS  Google Scholar 

  37. Teilum, K., Olsen, J. G., & Kragelund, B. B. (2011). Protein stability, flexibility and function. Biochimica et Biophysica Acta, 1814, 969–976.

    Article  CAS  Google Scholar 

  38. Bhabha, G., Lee, J., Ekiert, D. C., Gam, J., Wilson, I. A., Dyson, H. J., et al. (2011). A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science, 332, 234–238.

    Article  CAS  Google Scholar 

  39. Kumar, V., Yedavalli, P., Gupta, V., & Rao, N. M. (2014). Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures. Protein Engineering, Design and Selection, 27, 73–82.

    Article  Google Scholar 

  40. Bu, L., Crowley, M. F., Himmel, M. E., & Beckham, G. T. (2013). Computational investigation of the pH dependence of loop flexibility and catalytic function in glycoside hydrolases. Journal of Biological Chemistry, 288, 12175–12186.

    Article  CAS  Google Scholar 

  41. Pingali, S. V., O’Neill, H. M., McGaughey, J., Urban, V. S., Rempe, C. S., Petridis, L., et al. (2011). Small angle neutron scattering reveals pH-dependent conformational changes in Trichoderma reesei cellobiohydrolase I: implications for enzymatic activity. Journal of Biological Chemistry, 286, 32801–32809.

    Article  CAS  Google Scholar 

  42. Nielsen, J. E., & Vriend, G. (2001). Optimizing the hydrogen-bond network in Poisson-Boltzmann equation-based pK(a) calculations. Proteins, 43, 403–412.

    Article  CAS  Google Scholar 

  43. D’Amico, S., Marx, J. C., Gerday, C., & Feller, G. (2003). Activity-stability relationships in extremophilic enzymes. Journal of Biological Chemistry, 278, 7891–7896.

    Article  Google Scholar 

  44. Okano, H., Kanaya, E., Ozaki, M., Angkawidjaja, C., & Kanaya, S. (2014). Structure, activity, and stability of metagenome-derived glycoside hydrolase family 9 endoglucanase with an N-terminal Ig-like domain. Protein Science, 24, 408–419.

    Article  Google Scholar 

  45. Pazhang, M., Mehrnejad, F., Pazhang, Y., Falahati, H., & Chaparzadeh, N. (2015). Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents. Biotechnology and Applied Biochemistry. doi:10.1002/bab.1366.

    Google Scholar 

Download references

Acknowledgments

We thank Professor S. Moréra (from Laboratoired’Enzymologie et BiochimieStructurales (LEBS), CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France) for the gift of pDEST17-AaCel9A. The authors express their gratitude to the research council of Azarbaijan Shahid Madani University for the financial support during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Pazhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younesi, F.S., Pazhang, M., Najavand, S. et al. Deleting the Ig-Like Domain of Alicyclobacillus acidocaldarius Endoglucanase Cel9A Causes a Simultaneous Increase in the Activity and Stability. Mol Biotechnol 58, 12–21 (2016). https://doi.org/10.1007/s12033-015-9900-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9900-3

Keywords

Navigation