Skip to main content

Advertisement

Log in

Dual function of activated PPARγ by ligands on tumor growth and immunotherapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

As one of the peroxisome-proliferator-activated receptors (PPARs) members, PPARγ is a ligand binding and activated nuclear hormone receptor, which is an important regulator in metabolism, proliferation, tumor progression, and immune response. Increased evidence suggests that activation of PPARγ in response to ligands inhibits multiple types of cancer proliferation, metastasis, and tumor growth and induces cell apoptosis including breast cancer, colon cancer, lung cancer, and bladder cancer. Conversely, some reports suggest that activation of PPARγ is associated with tumor growth. In addition to regulating tumor progression, PPARγ could promote or inhibit tumor immunotherapy by affecting macrophage differentiation or T cell activity. These controversial findings may be derived from cancer cell types, conditions, and ligands, since some ligands are independent of PPARγ activity. Therefore, this review discussed the dual role of PPARγ on tumor progression and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Palmer CN, Hsu MH, Griffin HJ, Johnson EF. Novel sequence determinants in peroxisome proliferator signaling. J Biol Chem. 1995;270(27):16114–21.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Z, Xu Y, Xu Q, Hou Y. PPARgamma against tumors by different signaling pathways. Onkologie. 2013;36(10):598–601.

    CAS  PubMed  Google Scholar 

  3. Gou Q, et al. PPARgamma inhibited tumor immune escape by inducing PD-L1 autophagic degradation. Cancer Sci. 2023;114(7):2871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu L, et al. PPARgamma agonist inhibits c-Myc-mediated colorectal cancer tumor immune escape. J Cell Biochem. 2023;124(8):1145–54.

    Article  CAS  PubMed  Google Scholar 

  5. Xu Y, et al. SULT1E1 inhibits cell proliferation and invasion by activating PPARgamma in breast cancer. J Cancer. 2018;9(6):1078–87.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang Y, et al. VSP-17, a New PPARgamma Agonist, Suppresses the Metastasis of Triple-Negative Breast Cancer via Upregulating the Expression of E-Cadherin. Molecules. 2018. https://doi.org/10.3390/molecules23010121.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cao LQ, et al. Activation of peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits hepatoma cell growth via downregulation of SEPT2 expression. Cancer Lett. 2015;359(1):127–35.

    Article  CAS  PubMed  Google Scholar 

  8. To KKW, Wu WKK, Loong HHF. PPARgamma agonists sensitize PTEN-deficient resistant lung cancer cells to EGFR tyrosine kinase inhibitors by inducing autophagy. Eur J Pharmacol. 2018;823:19–26.

    Article  CAS  PubMed  Google Scholar 

  9. Mehus AA, et al. Activation of PPARgamma and inhibition of cell proliferation reduces key proteins associated with the basal subtype of bladder cancer in As3+-transformed UROtsa cells. PLoS ONE. 2020;15(8): e0237976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tashiro Y, et al. Ischemia reperfusion-induced metastasis is resistant to PPARgamma agonist pioglitazone in a murine model of colon cancer. Sci Rep. 2020;10(1):18565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hernandez-Quiles M, et al. TRIB3 Modulates PPARgamma-Mediated Growth Inhibition by Interfering with the MLL Complex in Breast Cancer Cells. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms231810535.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hua TNM, et al. PPARgamma-mediated ALDH1A3 suppression exerts anti-proliferative effects in lung cancer by inducing lipid peroxidation. J Recept Signal Transduct Res. 2018;38(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  13. Chang HK, et al. Inhibition of ERK activity enhances the cytotoxic effect of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists in HeLa cells. Biochem Biophys Res Commun. 2017;482(4):843–8.

    Article  CAS  PubMed  Google Scholar 

  14. Pu Z, Zhu M, Kong F. Telmisartan prevents proliferation and promotes apoptosis of human ovarian cancer cells through upregulating PPARgamma and downregulating MMP-9 expression. Mol Med Rep. 2016;13(1):555–9.

    Article  CAS  PubMed  Google Scholar 

  15. Xu YY, et al. PPARgamma inhibits breast cancer progression by upregulating PTPRF expression. Eur Rev Med Pharmacol Sci. 2019;23(22):9965–77.

    PubMed  Google Scholar 

  16. Yamashita H, et al. Repression of transcription factor AP-2 alpha by PPARgamma reveals a novel transcriptional circuit in basal-squamous bladder cancer. Oncogenesis. 2019;8(12):69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hou Y, Moreau F, Chadee K. PPARgamma is an E3 ligase that induces the degradation of NFkappaB/p65. Nat Commun. 2012;3:1300.

    Article  PubMed  Google Scholar 

  18. Hou Y, et al. PPARgamma E3 ubiquitin ligase regulates MUC1-C oncoprotein stability. Oncogene. 2014;33(49):5619–25.

    Article  CAS  PubMed  Google Scholar 

  19. Fujita M, et al. Cytotoxicity of 15-deoxy-Delta(12,14)-prostaglandin J(2) through PPARgamma-independent pathway and the involvement of the JNK and Akt pathway in renal cell carcinoma. Int J Med Sci. 2012;9(7):555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu J, et al. Bergenin inhibits bladder cancer progression via activating the PPARgamma/PTEN/Akt signal pathway. Drug Dev Res. 2021;82(2):278–86.

    Article  CAS  PubMed  Google Scholar 

  21. Ai X, et al. Bexarotene inhibits the viability of non-small cell lung cancer cells via slc10a2/PPARgamma/PTEN/mTOR signaling pathway. BMC Cancer. 2018;18(1):407.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Han M, et al. Hispidulin inhibits hepatocellular carcinoma growth and metastasis through AMPK and ERK signaling mediated activation of PPARgamma. Biomed Pharmacother. 2018;103:272–83.

    Article  CAS  PubMed  Google Scholar 

  23. Zou Y, et al. Polyunsaturated Fatty Acids from Astrocytes Activate PPARgamma Signaling in Cancer Cells to Promote Brain Metastasis. Cancer Discov. 2019;9(12):1720–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rinaldi L, et al. Loss of Dnmt3a and Dnmt3b does not affect epidermal homeostasis but promotes squamous transformation through PPAR-gamma. Elife. 2017. https://doi.org/10.7554/eLife.21697.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Musicant AM, et al. CRTC1/MAML2 directs a PGC-1alpha-IGF-1 circuit that confers vulnerability to PPARgamma inhibition. Cell Rep. 2021;34(8): 108768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng S, et al. PPARgamma inhibition regulates the cell cycle, proliferation and motility of bladder cancer cells. J Cell Mol Med. 2019;23(5):3724–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sippel TR, et al. Activation of PPARgamma in Myeloid Cells Promotes Progression of Epithelial Lung Tumors through TGFbeta1. Mol Cancer Res. 2019;17(8):1748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khandekar MJ, et al. Noncanonical agonist PPARgamma ligands modulate the response to DNA damage and sensitize cancer cells to cytotoxic chemotherapy. Proc Natl Acad Sci U S A. 2018;115(3):561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu RZ, et al. The FABP12/PPARgamma pathway promotes metastatic transformation by inducing epithelial-to-mesenchymal transition and lipid-derived energy production in prostate cancer cells. Mol Oncol. 2020;14(12):3100–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang J, et al. A novel multifunctional mitochondrion-targeting NIR fluorophore probe inhibits tumour proliferation and metastasis through the PPARgamma/ROS/beta-catenin pathway. Eur J Med Chem. 2023;258: 115435.

    Article  CAS  PubMed  Google Scholar 

  31. Forootan FS, et al. Fatty acid activated PPARgamma promotes tumorigenicity of prostate cancer cells by up regulating VEGF via PPAR responsive elements of the promoter. Oncotarget. 2016;7(8):9322–39.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu B, et al. PPARgamma inhibition boosts efficacy of PD-L1 Checkpoint Blockade Immunotherapy against Murine Melanoma in a sexually dimorphic manner. Int J Biol Sci. 2020;16(9):1526–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu B, et al. Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncoimmunology. 2018;7(11): e1500107.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xiong Z, et al. Targeting PPAR-gamma counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carcinoma. Gut. 2023;72(9):1758–73.

    Article  CAS  PubMed  Google Scholar 

  35. Erra Diaz F, et al. Concomitant inhibition of PPARgamma and mTORC1 induces the differentiation of human monocytes into highly immunogenic dendritic cells. Cell Rep. 2023;42(3): 112156.

    Article  CAS  PubMed  Google Scholar 

  36. Prat M, et al. PPARgamma activation modulates the balance of peritoneal macrophage populations to suppress ovarian tumor growth and tumor-induced immunosuppression. J Immunother Cancer. 2023. https://doi.org/10.1136/jitc-2023-007031.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cheng WY, Huynh H, Chen P, Pena-Llopis S, Wan Y. Macrophage PPARgamma inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone. Elife. 2016. https://doi.org/10.7554/eLife.18501.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nor Effa SZ, Yaacob NS, Mohd Nor N. Crosstalk between PPARgamma Ligands and Inflammatory-Related Pathways in Natural T-Regulatory Cells from Type 1 Diabetes Mouse Model. Biomolecules. 2018. https://doi.org/10.3390/biom8040135.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fu J, et al. Rosiglitazone Alleviates Mechanical Allodynia of Rats with Bone Cancer Pain through the Activation of PPAR-gamma to Inhibit the NF-kappaB/NLRP3 Inflammatory Axis in Spinal Cord Neurons. PPAR Res. 2021;2021:6086265.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lu ZH, et al. Dihydroartemisinin inhibits colon cancer cell viability by inducing apoptosis through up-regulation of PPARgamma expression. Saudi J Biol Sci. 2018;25(2):372–6.

    Article  CAS  PubMed  Google Scholar 

  41. Shen D, et al. Melatonin inhibits bladder tumorigenesis by suppressing PPARgamma/ENO1-mediated glycolysis. Cell Death Dis. 2023;14(4):246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lv S, Wang W, Wang H, Zhu Y, Lei C. PPARgamma activation serves as therapeutic strategy against bladder cancer via inhibiting PI3K-Akt signaling pathway. BMC Cancer. 2019;19(1):204.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kim TW, Hong DW, Hong SH. CB13, a novel PPARgamma ligand, overcomes radio-resistance via ROS generation and ER stress in human non-small cell lung cancer. Cell Death Dis. 2020;11(10):848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prost S, et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPARgamma agonists. Nature. 2015;525(7569):380–3.

    Article  CAS  PubMed  Google Scholar 

  45. Xu Y, et al. EGFR/MDM2 signaling promotes NF-kappaB activation via PPARgamma degradation. Carcinogenesis. 2016;37(2):215–22.

    Article  CAS  PubMed  Google Scholar 

  46. Hua TNM, et al. Inhibition of oncogenic Src induces FABP4-mediated lipolysis via PPARgamma activation exerting cancer growth suppression. EBioMedicine. 2019;41:134–45.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xu H, You M, Shi H, Hou Y. Ubiquitin-mediated NFkappaB degradation pathway. Cell Mol Immunol. 2015;12(6):653–5.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Zhang Y, Li Y, Zhang L, Yu S. Preclinical Investigation of Alpinetin in the Treatment of Cancer-Induced Cachexia via Activating PPARgamma. Front Pharmacol. 2021;12: 687491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu Y, et al. Oridonin exerts anticancer effect on osteosarcoma by activating PPAR-gamma and inhibiting Nrf2 pathway. Cell Death Dis. 2018;9(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zeng K, et al. CPT2-mediated fatty acid oxidation inhibits tumorigenesis and enhances sorafenib sensitivity via the ROS/PPARgamma/NF-kappaB pathway in clear cell renal cell carcinoma. Cell Signal. 2023;110: 110838.

    Article  CAS  PubMed  Google Scholar 

  51. Park EJ, Park SY, Joe EH, Jou I. 15d-PGJ2 and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. J Biol Chem. 2003;278(17):14747–52.

    Article  CAS  PubMed  Google Scholar 

  52. Al-Alem L, Southard RC, Kilgore MW, Curry TE. Specific thiazolidinediones inhibit ovarian cancer cell line proliferation and cause cell cycle arrest in a PPARgamma independent manner. PLoS ONE. 2011;6(1): e16179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kole L, Sarkar M, Deb A, Giri B. Pioglitazone, an anti-diabetic drug requires sustained MAPK activation for its anti-tumor activity in MCF7 breast cancer cells, independent of PPAR-gamma pathway. Pharmacol Rep. 2016;68(1):144–54.

    Article  CAS  PubMed  Google Scholar 

  54. Wang HY, et al. Rosiglitazone elevates sensitization of drug-resistant oral epidermoid carcinoma cells to vincristine by G2/M-phase arrest, independent of PPAR-gamma pathway. Biomed Pharmacother. 2016;83:349–61.

    Article  CAS  PubMed  Google Scholar 

  55. Ding J, et al. AMPK phosphorylates PPARdelta to mediate its stabilization, inhibit glucose and glutamine uptake and colon tumor growth. J Biol Chem. 2021;297(3): 100954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu X, et al. VSP-17 suppresses the migration and invasion of triple-negative breast cancer cells through inhibition of the EMT process via the PPARgamma/AMPK signaling pathway. Oncol Rep. 2021;45(3):975–86.

    Article  CAS  PubMed  Google Scholar 

  57. Tang Q, Wu J, Zheng F, Hann SS, Chen Y. Emodin Increases Expression of Insulin-Like Growth Factor Binding Protein 1 through Activation of MEK/ERK/AMPKalpha and Interaction of PPARgamma and Sp1 in Lung Cancer. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2017;41(1):339–57.

    Article  CAS  PubMed  Google Scholar 

  58. Li X, et al. The PPARgamma agonist rosiglitazone sensitizes the BH3 mimetic (-)-gossypol to induce apoptosis in cancer cells with high level of Bcl-2. Mol Carcinog. 2018;57(9):1213–22.

    Article  CAS  PubMed  Google Scholar 

  59. Saez E, et al. Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med. 1998;4(9):1058–61.

    Article  CAS  PubMed  Google Scholar 

  60. McAlpine CA, Barak Y, Matise I, Cormier RT. Intestinal-specific PPARgamma deficiency enhances tumorigenesis in ApcMin/+ mice. Int J Cancer. 2006;119(10):2339–46.

    Article  CAS  PubMed  Google Scholar 

  61. Wang Z, et al. The PPARgamma Agonist Rosiglitazone Enhances the Radiosensitivity of Human Pancreatic Cancer Cells. Drug Des Devel Ther. 2020;14:3099–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsubaki M, et al. Pioglitazone inhibits cancer cell growth through STAT3 inhibition and enhanced AIF expression via a PPARgamma-independent pathway. J Cell Physiol. 2018;233(4):3638–47.

    Article  CAS  PubMed  Google Scholar 

  63. Shi J, et al. Pioglitazone inhibits EGFR/MDM2 signaling-mediated PPARgamma degradation. Eur J Pharmacol. 2016;791:316–21.

    Article  CAS  PubMed  Google Scholar 

  64. Nie S, et al. PPARgamma/SOD2 Protects Against Mitochondrial ROS-Dependent Apoptosis via Inhibiting ATG4D-Mediated Mitophagy to Promote Pancreatic Cancer Proliferation. Front Cell Dev Biol. 2021;9: 745554.

    Article  PubMed  Google Scholar 

  65. Galbraith LCA, et al. PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene. 2021;40(13):2355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li L, et al. Inhibition of PPARgamma by BZ26, a GW9662 derivate, attenuated obesity-related breast cancer progression by inhibiting the reprogramming of mature adipocytes into to cancer associate adipocyte-like cells. Front Pharmacol. 2023;14:1205030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang J, et al. Gastric cancer cell-originated small extracellular vesicle induces metabolic reprogramming of BM-MSCs through ERK-PPARgamma-CPT1A signaling to potentiate lymphatic metastasis. Cancer Cell Int. 2023;23(1):87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Al-Jameel W, et al. Inactivated FABP5 suppresses malignant progression of prostate cancer cells by inhibiting the activation of nuclear fatty acid receptor PPARgamma. Genes Cancer. 2019;10(3–4):80–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Patitucci C, et al. Hepatocyte nuclear factor 1alpha suppresses steatosis-associated liver cancer by inhibiting PPARgamma transcription. J Clin Invest. 2017;127(5):1873–88.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cheng S, et al. Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARgamma-mediated pathway in bladder cancer. Clin Sci (Lond). 2019;133(15):1745–58.

    Article  CAS  PubMed  Google Scholar 

  71. Noh KH, et al. Ubiquitination of PPAR-gamma by pVHL inhibits ACLY expression and lipid metabolism, is implicated in tumor progression. Metabolism. 2020;110: 154302.

    Article  CAS  PubMed  Google Scholar 

  72. Yang PB, et al. Blocking PPARgamma interaction facilitates Nur77 interdiction of fatty acid uptake and suppresses breast cancer progression. Proc Natl Acad Sci U S A. 2020;117(44):27412–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Deng X, et al. Ovarian cancer stem cells induce the M2 polarization of macrophages through the PPARgamma and NF-kappaB pathways. Int J Mol Med. 2015;36(2):449–54.

    Article  CAS  PubMed  Google Scholar 

  74. Niu Z, et al. Caspase-1 cleaves PPARgamma for potentiating the pro-tumor action of TAMs. Nat Commun. 2017;8(1):766.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jia X, et al. PPARgamma agonist pioglitazone enhances colorectal cancer immunotherapy by inducing PD-L1 autophagic degradation. Eur J Pharmacol. 2023;950: 175749.

    Article  CAS  PubMed  Google Scholar 

  76. Gutting T, et al. PPARgamma-activation increases intestinal M1 macrophages and mitigates formation of serrated adenomas in mutant KRAS mice. Oncoimmunology. 2018;7(5): e1423168.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Korpal M, et al. Evasion of immunosurveillance by genomic alterations of PPARgamma/RXRalpha in bladder cancer. Nat Commun. 2017;8(1):103.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gutting T, et al. PPARgamma induces PD-L1 expression in MSS+ colorectal cancer cells. Oncoimmunology. 2021;10(1):1906500.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Seimandi M, et al. Differential responses of PPARalpha, PPARdelta, and PPARgamma reporter cell lines to selective PPAR synthetic ligands. Anal Biochem. 2005;344(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  80. Gou Q, et al. PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis. 2020;11(11):955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gou Q, et al. Inhibition of CK2/ING4 Pathway Facilitates Non-Small Cell Lung Cancer Immunotherapy. Adv Sci (Weinh). 2023;10(34): e2304068.

    Article  PubMed  Google Scholar 

  82. Casey SC, et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 2016;352(6282):227–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goyal G, et al. PPARgamma Contributes to Immunity Induced by Cancer Cell Vaccines That Secrete GM-CSF. Cancer Immunol Res. 2018;6(6):723–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiao XX, Lin SY, Lian SX, Qiu YR, Li ZH, Chen ZH, Lu WQ, Zhang Y, Deng L, Jiang Y, et al. The inhibition of the breast cancer by PPARgamma agonist pioglitazone through JAK2/STAT3 pathway. Neoplasma 2020;67:834–42.

    Article  CAS  PubMed  Google Scholar 

  85. Yokoyama Y, Xin B, Shigeto T, Mizunuma H. Combination of ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, and cisplatin enhances the inhibition of growth of human ovarian cancers. J Cancer Res Clin Oncol 2011;137:1219–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82172979).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

mingjun Chen, huijie Wang, and Qian Cui wrote the manuscript, Juanjuan Shi and Yongzhong Hou corrected the manuscript

Corresponding author

Correspondence to Yongzhong Hou.

Ethics declarations

Competing interests

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, H., Cui, Q. et al. Dual function of activated PPARγ by ligands on tumor growth and immunotherapy. Med Oncol 41, 114 (2024). https://doi.org/10.1007/s12032-024-02363-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02363-z

Keywords

Navigation