Skip to main content

Advertisement

Log in

COX 2-inhibitors; a thorough and updated survey into combinational therapies in cancers

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cyclooxygenase (COX) enzymes are pivotal in inflammation and cancer development. COX-2, in particular, has been implicated in tumor growth, angiogenesis, and immune evasion. Recently, COX-2 inhibitors have arisen as potential therapeutic agents in cancer treatment. In addition, combining COX inhibitors with other treatment modalities has demonstrated the potential to improve therapeutic efficacy. This review aims to investigate the effects of COX inhibition, both alone and in combination with other methods, on signaling pathways and carcinogenesis in various cancers. In this study, a literature search of all major academic databases was conducted (PubMed, Scholar google), including the leading research on the mechanisms of COX-2, COX-2 inhibitors, monotherapy with COX-2 inhibitors, and combining COX-2-inhibitors with chemotherapeutic agents in tumors. The study encompasses preclinical and clinical evidence, highlighting the positive findings and the potential implications for clinical practice. According to preclinical studies, multiple signaling pathways implicated in tumor cell proliferation, survival, invasion, and metastasis can be suppressed by inhibiting COX. In addition, combining COX inhibitors with chemotherapy drugs, targeted therapies, immunotherapies, and miRNA-based approaches has enhanced anti-tumor activity. These results suggest that combination therapy has the potential to overcome resistance mechanisms and improve treatment outcomes. However, caution must be exercised when selecting and administering combination regimens. Not all combinations of COX-2 inhibitors with other drugs result in synergistic effects; some may even have unfavorable interactions. Therefore, personalized approaches that consider the specific characteristics of the cancer and the medications involved are crucial for optimizing therapeutic strategies. In conclusion, as monotherapy or combined with other methods, COX inhibition bears promise in modulating signaling pathways and inhibiting carcinogenesis in various cancers. Additional studies and well-designed clinical trials are required to completely elucidate the efficacy of COX inhibition and combination therapy in enhancing cancer treatment outcomes. This narrative review study provides a detailed summary of COX-2 monotherapy and combination targeted therapy in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no new data were created or analyzed in this review study.

Abbreviations

COX:

Cyclooxygenases

Ptgs2:

Prostaglandin-endoperoxide synthase 2

PGE2:

Prostaglandin E2

DMBA:

7,12-dimethylbenz[a]anthracene

EP1:

Prostaglandin E2 receptor 1

EGFR:

Epidermal growth factor receptor

MMPs:

Matrix metalloproteinases

TGF2:

Transforming growth factor 2

PI3K:

Phosphatidylinositol 3-kinase

AKT:

protein kinase B

NSAIDs:

Non-steroidal anti-inflammatory medications

ICP:

Intracranial pressure

TXA2:

Thromboxane A2

TRAILR:

Tumor necrosis factor-related apoptosis-inducing ligand Receptor

IDO:

Indoleamine 2,3-dioxygenase

BCL-2:

B-cell lymphoma 2

OS:

Overall survival

STAT3:

Signal transducers and activators of transcription 3

VEGF:

vascular endothelial growth factor

JAK-2:

Janus Kinase 2

TKI:

Tyrosine kinase inhibitor

HER2:

Human epidermal growth factor receptor 2

NSCLC:

Non-small-cell lung cancer

MDSCs:

Myeloid-derived suppressor cells

ER:

Endoplasmic reticulum

HCC:

Hepatocellular carcinoma

miRNA:

MicroRNA

ncRNAs:

Non-coding RNAs

MDR:

Multidrug resistance protein 1

NF-κB:

Nuclear factor kappa B

LRP:

low-density lipoprotein receptor-related protein-1

mTOR:

Mammalian target of rapamycin

ABCB1:

Adenosine triphosphate–binding cassette subfamily B member 1

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F, Global Cancer Statistics 2020. GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 Countries. CA: Canc J Clin. 2021;71:209–49.

    Google Scholar 

  2. Fodale V, Pierobon M, Liotta L, Petricoin E. Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J (Sudbury Mass). 2011;17:89–95.

    Article  CAS  Google Scholar 

  3. Xu XC. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs. 2002;13:127–37.

    Article  CAS  PubMed  Google Scholar 

  4. Wang D, Guo XZ, Li HY, Zhao JJ, Shao XD, Wu CY. Prognostic significance of cyclooxygenase-2 protein in Pancreatic cancer: a meta-analysis. Tumour Biol. 2014;35:10301–7.

    Article  CAS  PubMed  Google Scholar 

  5. Li S, Jiang M, Wang L, Yu S. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: recent advancement. Biomed Pharmacother. 2020;129:110389.

    Article  CAS  PubMed  Google Scholar 

  6. Mahboubi Rabbani SMI, Zarghi A. Selective COX-2 inhibitors as anti-cancer agents: a patent review (2014–2018). Exp Opinion Ther Pat. 2019;29:407–27.

    Article  CAS  Google Scholar 

  7. El-Malah AA, Gineinah MM, Deb PK, Khayyat AN, Bansal M, Venugopala KN, Aljahdali AS. Selective COX-2 inhibitors: road from success to controversy and the quest for repurposing. Pharmaceuticals. 2022;15(7):827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dannenberg AJ, Zakim D. Chemoprevention of Colorectal cancer through inhibition of cyclooxygenase-2. Semin Oncol. 1999;26:499–504.

    CAS  PubMed  Google Scholar 

  9. Eling TE, Thompson DC, Foureman GL, Curtis JF, Hughes MF. Prostaglandin H synthase and xenobiotic oxidation. Annu Rev Pharmacol Toxicol. 1990;30:1–45.

    Article  CAS  PubMed  Google Scholar 

  10. Wiese FW, Thompson PA, Kadlubar FF. Carcinogen substrate specificity of human COX-1 and COX-2. Carcinogenesis. 2001;22:5–10.

    Article  CAS  PubMed  Google Scholar 

  11. Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, Haudenschild C, Lane TF, Hla T. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem. 2001;276:18563–9.

    Article  CAS  PubMed  Google Scholar 

  12. Muller-Decker K, Neufang G, Berger I, Neumann M, Marks F, Furstenberger G. Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc Natl Acad Sci USA. 2002;99:12483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM. Suppression of intestinal polyposis in apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996;87:803–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sonoshita M, Takaku K, Sasaki N, Sugimoto Y, Ushikubi F, Narumiya S, Oshima M, Taketo MM. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in apc(Delta 716) knockout mice. Nat Med. 2001;7:1048–51.

    Article  CAS  PubMed  Google Scholar 

  15. Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon Cancer cells. Cancer Res. 1998;58:362–6.

    CAS  PubMed  Google Scholar 

  16. Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon Cancer growth and gastrointestinal hypertrophy. Nat Med. 2002;8:289–93.

    Article  CAS  PubMed  Google Scholar 

  17. Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, DuBois RN. Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncology: Official J Am Soc Clin Oncol. 2005;23:254–66.

    Article  CAS  Google Scholar 

  18. Buchanan FG, Wang D, Bargiacchi F, DuBois RN. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem. 2003;278:35451–7.

    Article  CAS  PubMed  Google Scholar 

  19. Shao J, Lee SB, Guo H, Evers BM, Sheng H. Prostaglandin E2 stimulates the growth of colon Cancer cells via induction of amphiregulin. Cancer Res. 2003;63:5218–23.

    CAS  PubMed  Google Scholar 

  20. Laronha H, Caldeira J. Structure and function of human matrix metalloproteinases. Cells. 2020;9(5):1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon Cancer cells increases metastatic potential. Proc Natl Acad Sci USA. 1997;94:3336–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Attiga FA, Fernandez PM, Weeraratna AT, Manyak MJ, Patierno SR. Inhibitors of prostaglandin synthesis inhibit human prostate Tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res. 2000;60:4629–37.

    CAS  PubMed  Google Scholar 

  23. Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell. 1995;83:493–501.

    Article  CAS  PubMed  Google Scholar 

  24. Kakiuchi Y, Tsuji S, Tsujii M, Murata H, Kawai N, Yasumaru M, Kimura A, Komori M, Irie T, Miyoshi E, Sasaki Y, Hayashi N, Kawano S, Hori M. Cyclooxygenase-2 activity altered the cell-surface carbohydrate antigens on colon cancer cells and enhanced liver metastasis. Cancer Res. 2002;62:1567–72.

    CAS  PubMed  Google Scholar 

  25. Tian J, Wang V, Wang N, Khadang B, Boudreault J, Bakdounes K, Ali S, Lebrun JJ. Identification of MFGE8 and KLK5/7 as mediators of breast tumorigenesis and resistance to COX-2 inhibition. Breast Cancer Res. 2021;23(1):1–8.

    Article  Google Scholar 

  26. Zhang T, Liu H, Li Y, Li C, Wan G, Chen B, Li C, Wang Y. A pH-sensitive nanotherapeutic system based on a marine sulfated polysaccharide for the treatment of metastatic Breast cancer through combining chemotherapy and COX-2 inhibition. Acta Biomater. 2019;99:412–25.

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi T, Kozaki K, Yatabe Y, Achiwa H, Hida T. Increased expression of COX-2 in the development of human lung cancers. J Environ Pathol Toxicol Oncol. 2002;21:177–81.

    Article  CAS  PubMed  Google Scholar 

  28. Jin K, Qian C, Lin J, Liu B. Cyclooxygenase-2-Prostaglandin E2 pathway: a key player in tumor-associated immune cells. Front Oncol. 2023;13:1099811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H. Wnt signaling in Colorectal cancer: pathogenic role and therapeutic target. Mol Cancer. 2022;21:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Geindreau M, Bruchard M, Vegran F. Role of cytokines and chemokines in angiogenesis in a tumor context. Cancers. 2022;14(10):2446.

    Article  CAS  PubMed Central  Google Scholar 

  31. Zarghi A, Arfaei S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res: IJPR. 2011;10:655–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Ghosh A, Connolly PJ, King P, Wilde T, Wang J, Dong Y, Li X, Liao D, Chen H, Tian G, Suarez J, Bonnette WG, Pande V, Diloreto KA, Shi Y, Patel S, Pietrak B, Szewczuk L, Sensenhauser C, Dallas S, Edwards JP, Bachman KE, Evans DC. Gut-restricted selective Cyclooxygenase-2 (COX-2) inhibitors for chemoprevention of colorectal cancer. J Med Chem. 2021;64:11570–96.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, Guo N, Wan G, Zhang T, Li C, Wang Y, Wang Y, Liu Y. pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J Nanobiotechnol. 2019;17:109.

    Article  Google Scholar 

  34. Amit A, Yadav S, Singh RP, Kumar C. Development of RNA-Based medicine for colorectal cancer: current scenario. In: Colon cancer diagnosis and therapy. 3rd ed. Heidelberg: Springer; 2022. p. 339–60.

    Chapter  Google Scholar 

  35. Jara-Gutiérrez A, Baladrón V. The role of prostaglandins in different types of cancer. Cells. 2021;10(6):1487.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee Y, Rodriguez C, Dionne RA. The role of COX-2 in acute pain and the use of selective COX-2 inhibitors for acute pain relief. Curr Pharm Des. 2005;11:1737–55.

    Article  CAS  PubMed  Google Scholar 

  37. De Monte C, Carradori S, Gentili A, Mollica A, Trisciuoglio D, Supuran CT. Dual cyclooxygenase and carbonic anhydrase inhibition by non-steroidal anti-inflammatory drugs for the treatment of cancer. Curr Med Chem. 2015;22:2812–8.

    Article  PubMed  Google Scholar 

  38. Supuran CT, Casini A, Mastrolorenzo A, Scozzafava A. COX-2 selective inhibitors, carbonic anhydrase inhibition and anti-cancer properties of sulfonamides belonging to this class of pharmacological agents. Mini Rev Med Chem. 2004;4:625–32.

    Article  CAS  Google Scholar 

  39. Dogné JM, Thiry A, Pratico D, Masereel B, Supuran CT. Dual carbonic anhydrase–cyclooxygenase-2 inhibitors. Curr Top Med Chem. 2007;7:885–91.

    Article  PubMed  Google Scholar 

  40. Temperini C, Cecchi A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Sulfonamide diuretics revisited–old leads for new applications? Org Biomol Chem. 2008;6(14):2499–506.

    Article  CAS  Google Scholar 

  41. Noma N, Fujii G, Miyamoto S, Komiya M, Nakanishi R, Shimura M, Tanuma SI, Mutoh M. Impact of acetazolamide, a carbonic anhydrase inhibitor, on the development of intestinal polyps in min mice. Int J Mol Sci. 2017;18(4):851.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Singh S, Lomelino CL, Mboge MY, Frost SC, McKenna R. Cancer drug development of carbonic anhydrase inhibitors beyond the active site. Molecules (Basel). 2018;23(5):1045.

    Article  Google Scholar 

  43. Pannunzio A, Coluccia M. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: a review of oncology and medicinal chemistry literature. Pharmaceuticals (Basel). 2018;11(4):101.

    Article  CAS  PubMed  Google Scholar 

  44. Mattia C, Coluzzi F. COX-2 inhibitors: pharmacological data and adverse effects. Minerva Anestesiol. 2005;71:461–70.

    CAS  PubMed  Google Scholar 

  45. Davies NM, Jamali F. COX-2 selective inhibitors cardiac toxicity: getting to the heart of the matter. J Pharm Pharm Sci. 2004;7:332–6.

    CAS  PubMed  Google Scholar 

  46. Mathew ST, Devi SG, Prasanth VV, Vinod B. Efficacy and safety of COX-2 Inhibitors in the clinical management of arthritis: Mini review. ISRN Pharmacol. 2011;2011:480291.

    Article  PubMed Central  Google Scholar 

  47. Syed M, Skonberg C, Hansen SH. Mitochondrial toxicity of selective COX-2 inhibitors via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria. Toxicol Vitro. 2016;32:26–40.

    Article  CAS  Google Scholar 

  48. Bansal SS, Joshi A, Bansal AK. New dosage formulations for targeted delivery of cyclo-oxygenase-2 inhibitors: focus on use in the elderly. Drugs Aging. 2007;24:441–51.

    Article  CAS  PubMed  Google Scholar 

  49. Moon H, White AC, Borowsky AD. New insights into the functions of Cox-2 in skin and esophageal malignancies. Exp Mol Med. 2020;52:538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang P, He D, Song E, Jiang M, Song Y. Celecoxib enhances the sensitivity of non-small-cell lung cancer cells to radiation-induced apoptosis through downregulation of the Akt/mTOR signaling pathway and COX-2 expression. PLoS ONE. 2019;14:e0223760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fournier DB, Gordon GB. COX-2 and colon cancer: potential targets for chemoprevention. J Cell Biochem Suppl. 2000;34:97–102.

    Article  CAS  Google Scholar 

  52. Arun B, Goss P. The role of COX-2 inhibition in Breast cancer treatment and prevention. Semin Oncol. 2004;31:22–9.

    Article  CAS  PubMed  Google Scholar 

  53. Klenke FM, Abdollahi A, Bischof M, Gebhard M-M, Ewerbeck V, Huber PE, Sckell A. Celecoxib enhances radiation response of secondary bone tumors of a human non-small cell Lung cancer via antiangiogenesis in vivo. Strahlenther Onkol. 2011;187:45–51.

    Article  PubMed  Google Scholar 

  54. Garg R, Blando JM, Perez CJ, Lal P, Feldman MD, Smyth EM, Ricciotti E, Grosser T, Benavides F, Kazanietz MG. COX-2 mediates pro-tumorigenic effects of PKCε in Prostate cancer. Oncogene. 2018;37:4735–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghosh N, Chaki R, Mandal V, Mandal SC. COX-2 as a target for cancer chemotherapy. Pharmacol Rep. 2010;62:233–44.

    Article  CAS  PubMed  Google Scholar 

  56. El-Malah AA, Gineinah MM, Deb PK, Khayyat AN, Bansal M, Venugopala KN, Aljahdali AS. Selective COX-2 Inhibitors: road from success to controversy and the quest for repurposing. Pharmaceuticals (Basel). 2022;15(7):827.

    Article  CAS  PubMed  Google Scholar 

  57. Pu D, Yin L, Huang L, Qin C, Zhou Y, Wu Q, Li Y, Zhou Q, Li L. Cyclooxygenase-2 inhibitor: a potential combination strategy with immunotherapy in cancer. Front Oncol. 2021;11:637504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wen B, Wei YT, Mu LL, Wen GR, Zhao K. The molecular mechanisms of celecoxib in tumor development. Medicine. 2020;99:e22544.

    Article  CAS  PubMed Central  Google Scholar 

  59. Curry JM, Besmer DM, Erick TK, Steuerwald N, Das Roy L, Grover P, Rao S, Nath S, Ferrier JW, Reid RW, Mukherjee P. Indomethacin enhances anti-tumor efficacy of a MUC1 peptide vaccine against Breast cancer in MUC1 transgenic mice. PLoS ONE. 2019;14:e0224309.

    Article  CAS  PubMed Central  Google Scholar 

  60. Trang NTK, Yoo H. Anti-tumor effects of Valdecoxib on hypopharyngeal squamous carcinoma cells. Korean J Physiol Pharmacol: Offl J Korean Physiol Soc Korean Soc Pharmacol. 2022;26:439–46.

    Article  CAS  Google Scholar 

  61. Md S, Alhakamy NA, Alharbi WS, Ahmad J, Shaik RA, Ibrahim IM, Ali J. Development and evaluation of repurposed etoricoxib loaded nanoemulsion for improving anti-cancer activities against lung cancer cells. Int J Mol Sci. 2021;22(24):13284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Das M, Law S. Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence. Int J Biochem Cell Biol. 2018;103:115–24.

    Article  CAS  PubMed  Google Scholar 

  63. Rehman FU, Al-Waeel M, Naz SS, Shah KU. Anti-cancer therapeutics: a brief account on wide refinements. Am J cancer Res. 2020;10:3599–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Scott WW, Johnson DE, Schmidt JE, Gibbons RP, Prout GR, Joiner JR, Saroff J, Murphy GP. Chemotherapy of advanced prostatic carcinoma with cyclophosphamide or 5-fluorouracil: results of first national randomized study. J Urol. 1975;114:909–11.

    Article  CAS  PubMed  Google Scholar 

  65. Perroud HA, Alasino CM, Rico MJ, Mainetti LE, Queralt F, Pezzotto SM, Rozados VR. Graciela Scharovsky, metastatic Breast cancer patients treated with low-dose metronomic chemotherapy with cyclophosphamide and celecoxib: clinical outcomes and biomarkers of response. Cancer Chemother Pharmacol. 2016;77:365–74.

    Article  CAS  PubMed  Google Scholar 

  66. Stockhammer F, Misch M, Koch A, Czabanka M, Plotkin M, Blechschmidt C, Tuettenberg J, Vajkoczy P. Continuous low-dose temozolomide and Celecoxib in recurrent glioblastoma. J Neurooncol. 2010;100:407–15.

    Article  CAS  PubMed  Google Scholar 

  67. Lin XM, Li S, Zhou C, Li RZ, Wang H, Luo W, Huang YS, Chen LK, Cai JL, Wang TX, Zhang QH, Cao H, Wu XP. Cisplatin induces chemoresistance through the PTGS2-mediated anti-apoptosis in gastric cancer. Int J Biochem Cell Biol. 2019;116:105610.

    Article  CAS  PubMed  Google Scholar 

  68. Yang CX, Xing L, Chang X, Zhou TJ, Bi YY, Yu ZQ, Zhang ZQ, Jiang HL. Synergistic Platinum(II) prodrug nanoparticles for enhanced breast cancer therapy. Mol Pharm. 2020;17:1300–9.

    Article  CAS  PubMed  Google Scholar 

  69. Sung MW, Lee DY, Park SW, Oh SM, Choi JJ, Shin ES, Kwon SK, Ahn SH, Kim YH. Celecoxib enhances the inhibitory effect of 5-FU on human squamous cell carcinoma proliferation by ROS production. Laryngoscope. 2017;127:E117–e123.

    Article  CAS  PubMed  Google Scholar 

  70. Guo Q, Li Q, Wang J, Liu M, Wang Y, Chen Z, Ye Y, Guan Q, Zhou Y. A comprehensive evaluation of clinical efficacy and safety of Celecoxib in combination with chemotherapy in metastatic or postoperative recurrent gastric cancer patients: a preliminary, three-center, clinical trial study. Medicine. 2019;98:e16234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Araujo-Mino EP, Patt YZ, Murray-Krezan C, Hanson JA, Bansal P, Liem BJ, Rajput A, Fekrazad MH, Heywood G, Lee FC. Phase II trial using a combination of oxaliplatin, capecitabine, and celecoxib with concurrent radiation for newly diagnosed resectable rectal cancer. Oncologist. 2018;23:2-e5.

    Article  CAS  PubMed  Google Scholar 

  72. Khasraw M, Bell R, Dang C. Epirubicin: is it like doxorubicin in Breast cancer? A clinical review. Breast. 2012;21:142–9.

    Article  PubMed  Google Scholar 

  73. Cox J, Weinman S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepatic Oncol. 2016;3:57–9.

    Article  Google Scholar 

  74. Shi L, Xu L, Wu C, Xue B, Jin X, Yang J, Zhu X. Celecoxib-induced self-assembly of smart albumin-doxorubicin conjugate for enhanced cancer therapy. ACS Appl Mater Interfaces. 2018;10(10):8555–65.

    Article  CAS  PubMed  Google Scholar 

  75. Singh S. Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int J Nanomed. 2018;13:11–3.

    Article  CAS  Google Scholar 

  76. Abdallah FM, Helmy MW, Katary MA, Ghoneim AI. Synergistic antiproliferative effects of Curcumin and Celecoxib in hepatocellular carcinoma HepG2 cells. Naunyn-Schmiedeberg’s Arch Pharmacol. 2018;391:1399–410.

    Article  CAS  Google Scholar 

  77. Lev-Ari S, Zinger H, Kazanov D, Yona D, Ben-Yosef R, Starr A, Figer A, Arber N. Curcumin synergistically potentiates the growth inhibitory and pro-apoptotic effects of celecoxib in pancreatic adenocarcinoma cells. Biomed Pharmacother. 2005;59:276-S280.

    Article  Google Scholar 

  78. Lev-Ari S, Strier L, Kazanov D, Madar-Shapiro L, Dvory-Sobol H, Pinchuk I, Marian B, Lichtenberg D, Arber N. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res. 2005;11:6738–44.

    Article  CAS  PubMed  Google Scholar 

  79. Gowda R, Kardos G, Sharma A, Singh S, Robertson GP. Nanoparticle-based celecoxib and plumbagin for the synergistic treatment of melanoma. Mol Cancer Ther. 2017;16:440–52.

    Article  CAS  PubMed  Google Scholar 

  80. Yoysungnoen B, Bhattarakosol O, Changtam C, Patumraj S. Combinational treatment effect of tetrahydrocurcumin and celecoxib on cervical cancer cell-induced tumor growth and tumor angiogenesis in nude mice. J Med Association Thailand = Chotmaihet Thangphaet. 2016;99(4):23–31.

    Google Scholar 

  81. Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH. Akhavan-Sigari, progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer. 2023;22:169.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kim W, Son B, Lee S, Do H, Youn B. Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev. 2018;37:213–25.

    Article  CAS  PubMed  Google Scholar 

  83. Nakata E, Mason KA, Hunter N, Husain A, Raju U, Liao Z, Ang KK, Milas L. Potentiation of Tumor response to radiation or chemoradiation by selective cyclooxygenase-2 enzyme inhibitors. Int J Radiation Oncology* Biology* Phys. 2004;58:369–75.

    Article  CAS  Google Scholar 

  84. Amano H, Ito Y, Suzuki T, Kato S, Matsui Y, Ogawa F, Murata T, Sugimoto Y, Senior R, Kitasato H. Roles of a prostaglandin E-type receptor, EP3, in upregulation of matrix metalloproteinase‐9 and vascular endothelial growth factor during enhancement of tumor Metastasis. Cancer Sci. 2009;100:2318–24.

    Article  CAS  PubMed  Google Scholar 

  85. Salehifar E, Hosseinimehr SJ. The use of cyclooxygenase-2 inhibitors for improvement of efficacy of radiotherapy in cancers. Drug Discovery Today. 2016;21:654–62.

    Article  CAS  PubMed  Google Scholar 

  86. Sandler AB, Dubinett SM. COX-2 inhibition and lung cancer. In: Seminars in oncology. Amsterdam: Elsevier; 2004. p. 45–52.

    Google Scholar 

  87. Halamka M, Cvek J, Kubes J, Zavadova E, Kominek P, Horacek J, Dusek L, Feltl D. Plasma levels of vascular endothelial growth factor during and after radiotherapy in combination with Celecoxib in patients with advanced Head and Neck cancer. Oral Oncol. 2011;47:763–7.

    Article  CAS  PubMed  Google Scholar 

  88. Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A. Moshtaghian, c-phycocyanin: a natural product with radiosensitizing property for enhancement of colon Cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci Rep. 2019;9:19161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. King L, Christie D, Arora D, Anoopkumar-Dukie S. Cyclooxygenase-2 inhibitors delay relapse and reduce prostate specific Antigen (PSA) velocity in patients treated with radiotherapy for nonmetastatic Prostate cancer: a pilot study. Prostate Int. 2020;8:34–40.

    Article  PubMed  Google Scholar 

  90. Walker C. Are All Oral COX-2 Selective Inhibitors the Same? A Consideration of Celecoxib, Etoricoxib, and Diclofenac. International journal of rheumatology. 2018;2018:1302835. https://doi.org/10.1155/2018/1302835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu H, Ruan S, Larsen ME, Tan C, Liu B, Lyu H. Trastuzumab-resistant Breast cancer cells-derived Tumor xenograft models exhibit distinct sensitivity to lapatinib treatment in vivo. Biol Procedures Online. 2023;25:19.

    Article  CAS  Google Scholar 

  92. Reckamp KL, Koczywas M, Cristea MC, Dowell JE, Wang HJ, Gardner BK, Milne GL, Figlin RA, Fishbein MC, Elashoff RM, Dubinett SM. Randomized phase 2 trial of erlotinib in combination with high-dose celecoxib or placebo in patients with advanced non-small cell Lung cancer. Cancer. 2015;121:3298–306.

    Article  CAS  PubMed  Google Scholar 

  93. Jin YH, Li WH, Bai Y, Ni L. Efficacy of erlotinib and celecoxib for patients with advanced non-small cell Lung cancer: a retrospective study. Medicine. 2019;98:e14785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun J, Liu NB, Zhuang HQ, Zhao LJ, Yuan ZY, Wang P. Celecoxib-erlotinib combination treatment enhances radiosensitivity in A549 human lung cancer cell. Cancer biomarkers. 2017;19(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  95. Li N, Li H, Su F, Li J, Ma X, Gong P. Relationship between epidermal growth factor receptor (EGFR) mutation and serum cyclooxygenase-2 level, and the synergistic effect of Celecoxib and Gefitinib on EGFR expression in non-small cell Lung cancer cells. Int J Clin Exp Pathol. 2015;8:9010–20.

    PubMed  PubMed Central  Google Scholar 

  96. Liu J, Wu J, Zhou L, Pan C, Zhou Y, Du W, Chen JM, Zhu X, Shen J, Chen S, Liu RY, Huang W. ZD6474, a new treatment strategy for human osteosarcoma, and its potential synergistic effect with Celecoxib. Oncotarget. 2015;6(25):21341–52.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kaya TT, Altun A, Turgut NH, Ataseven H, Koyluoglu G. Effects of a multikinase inhibitor Motesanib (AMG 706) alone and combined with the selective DuP-697 COX-2 inhibitor on Colorectal Cancer cells. Asian Pac J cancer Prevention: APJCP. 2016;17:1103–10.

    Article  Google Scholar 

  98. Atari-Hajipirloo S, Nikanfar S, Heydari A, Noori F, Kheradmand F. The effect of Celecoxib and its combination with Imatinib on human HT-29 Colorectal cancer cells: involvement of COX-2, Caspase-3, VEGF and NF-κB genes expression. Cellular Mol Biol. 2016;62:68–74.

    CAS  Google Scholar 

  99. Zhao Q, Guo J, Wang G, Chu Y, Hu X. Suppression of immune regulatory cells with combined therapy of Celecoxib and sunitinib in renal cell carcinoma. Oncotarget. 2017;8:1668–77.

    Article  PubMed  Google Scholar 

  100. Zhong J, Xiu P, Dong X, Wang F, Wei H, Wang X, Xu Z, Liu F, Li T, Wang Y, Li J. Meloxicam combined with sorafenib synergistically inhibits Tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis. Oncol Rep. 2015;34:2142–50.

    Article  CAS  Google Scholar 

  101. Webb T, Carter J, Roberts JL, Poklepovic A, McGuire WP, Booth L, Dent P. Celecoxib enhances [sorafenib + sildenafil] lethality in cancer cells and reverts platinum chemotherapy resistance. Cancer Biol Ther. 2015;16:1660–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26:313–47.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sui W, Zhang Y, Wang Z, Wang Z, Jia Q, Wu L, Zhang W. Anti-tumor effect of a selective COX-2 inhibitor, Celecoxib, may be attributed to angiogenesis inhibition through modulating the PTEN/PI3K/Akt/HIF-1 pathway in an H22 murine hepatocarcinoma model. Oncol Rep. 2014;31:2252–60.

    Article  CAS  PubMed  Google Scholar 

  104. Hwang J-T, Ha J, Park OJ. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun. 2005;332:433–40.

    Article  CAS  PubMed  Google Scholar 

  105. Sminia P, Kuipers G, Geldof A, Lafleur V, Slotman B. COX-2 inhibitors act as radiosensitizer in tumor treatment. Biomed Pharmacother. 2005;59:272-S275.

    Article  Google Scholar 

  106. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anti-cancer Drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102:14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, Aza-Pascual-Salcedo M, Gimeno-Miguel A, Orlando V, González-Rubio F, Fanlo-Villacampa A, Lasala-Aza C, Ostasz E. Drug repurposing in oncology: a systematic review of randomized controlled clinical trials. Cancers. 2023;15(11):2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jaaks P, Coker EA, Vis DJ, Edwards O, Carpenter EF, Leto SM, Dwane L, Sassi F, Lightfoot H, Barthorpe S, van der Meer D, Yang W, Beck A, Mironenko T, Hall C, Hall J, Mali I, Richardson L, Tolley C, Morris J, Thomas F, Lleshi E, Aben N, Benes CH, Bertotti A, Trusolino L, Wessels L, Garnett MJ. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature. 2022;603:166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8:45–56.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mishan MA, Tabari MAK, Zargari M, Bagheri A. MicroRNAs in the anti-cancer effects of Celecoxib: a systematic review. Eur J Pharmacol. 2020;882:173325.

    Article  CAS  PubMed  Google Scholar 

  111. Fanale D, Castiglia M, Bazan V, Russo A. Involvement of non-coding RNAs in chemo-and radioresistance of colorectal cancer. Non-coding RNAs Colorectal Cancer. 2016;937:207–28.

    Article  CAS  Google Scholar 

  112. Yi M, Xu L, Jiao Y, Luo S, Li A, Wu K. The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol. 2020;13:1–14.

    Article  Google Scholar 

  113. Rezaei R, Baghaei K, Hashemi SM, Zali MR, Ghanbarian H, Amani D. Tumor-derived exosomes enriched by miRNA-124 promote anti-tumor immune response in CT-26 tumor-bearing mice. Front Med. 2021;8:619939.

    Article  Google Scholar 

  114. Gong Z, Huang W, Wang B, Liang N, Long S, Li W, Zhou Q. Interplay between cyclooxygenase–2 and microRNAs in cancer. Mol Med Rep. 2021;23:1–10.

    Article  Google Scholar 

  115. Pucci P. Combination therapy and noncoding RNAs: A new era of cancer personalized medicine. Epigenomics. 2022;14(3):117–20.

    Article  CAS  Google Scholar 

  116. Uramova S, Kubatka P, Dankova Z, Kapinova A, Zolakova B, Samec M, Zubor P, Zulli A, Valentova V, Kwon TK. Plant natural modulators in Breast cancer prevention: status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J. 2018;9:403–19.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sun P, Quan J-C, Wang S, Zhuang M, Liu Z, Guan X, Wang G-Y, Wang H-Y, Wang X-S. lncRNA-PACER up-regulates COX-2 and PGE2 through the NF-κB pathway to promote the proliferation and invasion of Colorectal-cancer cells. Gastroenterol Rep. 2021;9:257–68.

    Article  Google Scholar 

  118. Harati R, Mabondzo A, Tlili A, Khoder G, Mahfood M, Hamoudi R. Combinatorial targeting of microRNA-26b and microRNA-101 exerts a synergistic inhibition on cyclooxygenase-2 in brain metastatic triple-negative breast cancer cells. Breast Cancer Res Treat. 2021;187:695–713.

    Article  CAS  PubMed  Google Scholar 

  119. Desind SZ, Iacona JR, Christina YY, Mitrofanova A, Lutz CS. PACER lncRNA regulates COX-2 expression in Lung cancer cells. Oncotarget. 2022;13:291.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tudor DV, Bâldea I, Lupu M, Kacso T, Kutasi E, Hopârtean A, Stretea R, Gabriela Filip A. COX-2 as a potential biomarker and therapeutic target in Melanoma. Cancer Biol Med. 2020;17:20–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination therapy as a promising way to fight oral cancer. Pharmaceutics. 2023;15(6):1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H. Combination therapy in combating cancer. Oncotarget. 2017;8:38022–43.

    Article  PubMed  Google Scholar 

  123. Ahronian LG, Corcoran RB. Strategies for monitoring and combating resistance to combination kinase inhibitors for cancer therapy. Genome Med. 2017;9:1–12.

    Article  Google Scholar 

  124. Wang RC, Wang Z. Precision medicine: Disease subtyping and tailored treatment. Cancers. 2023;15(15):3837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018;109:952–63.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Perroud HA, Alasino CM, Rico MJ, Mainetti LE, Queralt F, Pezzotto SM, Rozados VR, Scharovsky OG. Metastatic Breast cancer patients treated with low-dose metronomic chemotherapy with cyclophosphamide and celecoxib: clinical outcomes and biomarkers of response. Cancer Chemother Pharmacol. 2016;77:365–74.

    Article  CAS  PubMed  Google Scholar 

  127. Chu TH, Chan HH, Hu TH, Wang EM, Ma YL, Huang SC, Wu JC, Chang YC, Weng WT, Wen ZH, Wu DC, Chen YA, Tai MH. Celecoxib enhances the therapeutic efficacy of epirubicin for Novikoff hepatoma in rats. Cancer Med. 2018;7:2567–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cao Y, Qu J, Li C, Yang D, Hou K, Zheng H, Liu Y, Qu X. Celecoxib sensitizes gastric cancer to rapamycin via inhibition of the Cbl-b-regulated PI3K/Akt pathway, tumour biology. J Int Soc Oncodeve Biol Med. 2015;36:5607–15.

    Article  CAS  Google Scholar 

  129. Abdallah FM, Helmy MW, Katary MA, Ghoneim AI. Synergistic antiproliferative effects of curcumin and celecoxib in hepatocellular carcinoma HepG2 cells. Naunyn Schmiedebergs Arch Pharmacol. 2018;391:1399–410.

    Article  CAS  PubMed  Google Scholar 

  130. Chen J, Liu S, Li Q, Peng J. [Combined application of Cisplatin and Celecoxib inhibits the proliferation and promotes apoptosis of nasopharyngeal carcinoma cells resistant to cisplatin], Xi bao Yu Fen Zi Mian Yi Xue Za Zhi = Chinese. J Cell Mol Immunol. 2015;31:203–6.

    CAS  Google Scholar 

  131. Li N, Li H, Su F, Li J, Ma X, Gong P. Relationship between epidermal growth factor receptor (EGFR) mutation and serum cyclooxygenase-2 level, and the synergistic effect of Celecoxib and Gefitinib on EGFR expression in non-small cell Lung cancer cells. Int J Clin Exp Pathol. 2015;8:9010.

    PubMed  PubMed Central  Google Scholar 

  132. Lin JZ, Hameed I, Xu Z, Yu Y, Ren ZY, Zhu JG. Efficacy of gefitinib–celecoxib combination therapy in docetaxel–resistant prostate cancer. Oncol Rep. 2018;40:2242–50.

    CAS  PubMed  Google Scholar 

  133. Riva B, De Dominici M, Gnemmi I, Mariani SA, Minassi A, Minieri V, Salomoni P, Canonico PL, Genazzani AA, Calabretta B, Condorelli F. Celecoxib inhibits proliferation and survival of chronic myelogeous leukemia (CML) cells via AMPK-dependent regulation of β-catenin and mTORC1/2. Oncotarget. 2016;7:81555–70.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zhao Q, Guo J, Wang G, Chu Y, Hu X. Suppression of immune regulatory cells with combined therapy of Celecoxib and sunitinib in renal cell carcinoma. Oncotarget. 2017;8:1668.

    Article  PubMed  Google Scholar 

  135. Zhong J, Xiu P, Dong X, Wang F, Wei H, Wang X, Xu Z, Liu F, Li T, Wang Y. Meloxicam combined with sorafenib synergistically inhibits Tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis. Oncol Rep. 2015;34:2142–50.

    Article  CAS  PubMed  Google Scholar 

  136. Sung MW, Lee DY, Park SW, Oh SM, Choi JJ, Shin ES, Kwon SK, Ahn SH, Kim YH. Celecoxib enhances the inhibitory effect of 5-FU on human squamous cell carcinoma proliferation by ROS production. Laryngoscope. 2017;127:E117–23.

    Article  CAS  PubMed  Google Scholar 

  137. Araujo-Mino EP, Patt YZ, Murray‐Krezan C, Hanson JA, Bansal P, Liem BJ, Rajput A, Fekrazad MH, Heywood G, Lee FC. Phase II trial using a combination of oxaliplatin, capecitabine, and Celecoxib with concurrent radiation for newly diagnosed resectable rectal cancer. Oncologist. 2018;23:2–e5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number RGP2/420/44.

Funding

This study was supported by the deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number RGP2/420/44.

Author information

Authors and Affiliations

Authors

Contributions

PR, HB, YFM, HRAKA-H, ATA: Conceptualization, Writing—original draft preparation. MMD, MMA-T, RSZ, AA: Conceptualization, Writing—review and editing, Visualization. AH: Conceptualization, Supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ahmad Hammoud or Hussein Riyadh Abdul Kareem Al-Hetty.

Ethics declarations

Competing interests

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, P., Bangali, H., Hammoud, A. et al. COX 2-inhibitors; a thorough and updated survey into combinational therapies in cancers. Med Oncol 41, 41 (2024). https://doi.org/10.1007/s12032-023-02256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02256-7

Keywords

Navigation