Skip to main content

Advertisement

Log in

Oncolytic viruses improve cancer immunotherapy by reprogramming solid tumor microenvironment

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Immunotherapies using immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T-cell therapy have achieved successful results against several types of human tumors, particularly hematological malignancies. However, their clinical results for the treatment of solid tumors remain poor and unsatisfactory. The immunosuppressive tumor microenvironment (TME) plays an important role by interfering with intratumoral T-cell infiltration, promoting effector T-cell exhaustion, upregulating inhibitory molecules, inducing hypoxia, and so on. Oncolytic viruses are an encouraging biocarrier that could be used in both natural and genetically engineered platforms to induce oncolysis in a targeted manner. Oncolytic virotherapy (OV) contributes to the reprogramming of the TME, thus synergizing the functional effects of current ICIs and CAR T-cell therapy to overcome resistant barriers in solid tumors. Here, we summarize the TME-related inhibitory factors affecting the therapeutic outcomes of ICIs and CAR T cells and discuss the potential of OV-based approaches to alleviate these barriers and improve future therapies for advanced solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

APCs:

Antigen-presenting cells

CAR:

Chimeric antigen receptor

ICIs:

Immune checkpoint inhibitors

HSV-1:

Herpes simplex virus type 1

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

OV:

Oncolytic virotherapy, OVs, oncolytic viruses

mAb:

Monoclonal antibody

TAA:

Tumor-associated antigen

TAM:

Tumor-associated macrophage

TME:

Tumor microenvironment

T-VEC:

Talimogene laherparepvec

References

  1. Wang H, Kaur G, Sankin AI, Chen F, Guan F, Zang X. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J Hematol Oncol. 2019;12(1):1–20.

    Article  Google Scholar 

  2. Abbasi S, Totmaj MA, Abbasi M, Hajazimian S, Goleij P, Behroozi J, et al. Chimeric antigen receptor T (CAR-T) cells: Novel cell therapy for hematological malignancies. Cancer Med. 2023. https://doi.org/10.1002/cam4.5551.

    Article  PubMed  Google Scholar 

  3. Marofi F, Motavalli R, Safonov VA, Thangavelu L, Yumashev AV, Alexander M, et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther. 2021;12(1):1–16.

    Article  Google Scholar 

  4. Wen L, Cheng F, Zhou Y, Yin C. MiR-26a enhances the sensitivity of gastric cancer cells to cisplatin by targeting NRAS and E2F2. Saudi J Gastroenterol. 2015;21(5):313.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grosskopf AK, Labanieh L, Klysz DD, Roth GA, Xu P, Adebowale O, et al. Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. Sci Adv. 2022;8(14):eabn8264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Machuca-Aguado J, Rodríguez-Zarco E, Carrero-García B, Vázquez-Ramírez FJ. Metastasis of uveal melanoma in bladder: presentation of two cases and review of the literature. Arch Esp Urol. 2022;75(10):873–7.

    Article  PubMed  Google Scholar 

  7. Murad JP, Tilakawardane D, Park AK, Lopez LS, Young CA, Gibson J, et al. Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity. Mol Ther. 2021;29(7):2335–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang A, Zhou W. Mn-based cGAS-STING activation for tumor therapy. Chin J Cancer Res. 2023;35(1):19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li M, Wei J, Xue C, Zhou X, Chen S, Zheng L, et al. Dissecting the roles and clinical potential of YY1 in the tumor microenvironment. Front Oncol. 2023;13:1122110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park AK, Fong Y, Kim S-I, Yang J, Murad JP, Lu J, et al. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Science translational medicine. 2020;12(559):eaaz1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Evgin L, Kottke T, Tonne J, Thompson J, Huff AL, van Vloten J, et al. Oncolytic virus–mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci Translational Med. 2022;14(640):2231.

    Article  Google Scholar 

  12. Ricca JM, Oseledchyk A, Walther T, Liu C, Mangarin L, Merghoub T, et al. Pre-existing immunity to oncolytic virus potentiates its immunotherapeutic efficacy. Mol Ther. 2018;26(4):1008–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Zheng Y, Deng T, Huang Y, Liu Z, Zhan B, et al. Oncolytic herpes simplex virus delivery of dual CAR targets of CD19 and BCMA as well as immunomodulators to enhance therapeutic efficacy in solid tumors combined with CAR T cell therapy. Front Oncol. 2022;12:1037934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keshavarz M, Ebrahimzadeh MS, Miri SM, Dianat-Moghadam H, Ghorbanhosseini SS, Mohebbi SR, et al. Oncolytic Newcastle disease virus delivered by Mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment. Virol J. 2020;17(1):1–13.

    Google Scholar 

  15. Arina A, Corrales L, Bronte V. Enhancing T cell therapy by overcoming the immunosuppressive tumor microenvironment. Seminars Immunol. 2016. https://doi.org/10.1016/j.smim.2016.01.002.

    Article  Google Scholar 

  16. Pan L, Feng F, Wu J, Fan S, Han J, Wang S, et al. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol Res. 2022;181: 106270.

    Article  CAS  Google Scholar 

  17. He B, Zhang Y, Zhou Z, Wang B, Liang Y, Lang J, et al. A neural network framework for predicting the tissue-of-origin of 15 common cancer types based on RNA-Seq data. Front Bioeng Biotechnol. 2020;8:737.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen S, Zeng J, Huang L, Peng Y, Yan Z, Zhang A, et al. RNA adenosine modifications related to prognosis and immune infiltration in osteosarcoma. J Transl Med. 2022;20(1):228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takamatsu M, Hirata A, Ohtaki H, Hoshi M, Ando T, Ito H, et al. Inhibition of indoleamine 2, 3-dioxygenase 1 expression alters immune response in colon tumor microenvironment in mice. Cancer Sci. 2015;106(8):1008–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu Z, Wang Y, Zhang L, Huang L. Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano. 2014;8(4):3636–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sağlam Ö, Ünal ZS, Subaşı C, Ulukaya E, Karaöz E. IL-6 originated from breast cancer tissue-derived mesenchymal stromal cells may contribute to carcinogenesis. Tumor Biology. 2015;36:5667–77.

    Article  Google Scholar 

  22. Zhao H, Tang S, Tao Q, Ming T, Lei J, Liang Y, et al. Ursolic acid suppresses colorectal cancer by down-regulation of Wnt/β-catenin signaling pathway activity. J Agric Food Chem. 2023;71(9):3981–93.

    Article  CAS  PubMed  Google Scholar 

  23. Chang Q-Q, Chen C-Y, Chen Z, Chang S. LncRNA PVT1 promotes proliferation and invasion through enhancing Smad3 expression by sponging miR-140-5p in cervical cancer. Radiol Oncol. 2019;53(4):443.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci Translational Med. 2013;5(200):200ra116-200ra116.

    Article  Google Scholar 

  25. Mao X, Chen Y, Lu X, Jin S, Jiang P, Deng Z, et al. Tissue resident memory T cells are enriched and dysfunctional in effusion of patients with malignant tumor. J Cancer. 2023;14(7):1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Xiong X, Huai Y, Dey A, Hossen MN, Roy RV, et al. Gold nanoparticles disrupt tumor microenvironment-endothelial cell cross talk to inhibit angiogenic phenotypes in vitro. Bioconjug Chem. 2019;30(6):1724–33.

    Article  CAS  PubMed Central  Google Scholar 

  27. Liu T, Han C, Wang S, Fang P, Ma Z, Xu L, et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol. 2019;12(1):1–15.

    Article  Google Scholar 

  28. Yonenaga Y, Mori A, Onodera H, Yasuda S, Oe H, Fujimoto A, et al. Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology. 2005;69(2):159–66.

    Article  PubMed  Google Scholar 

  29. Xu H, Wang H, Zhao W, Fu S, Li Y, Ni W, et al. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics. 2020;10(13):5671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garbi N, Arnold B, Gordon S, GnJ H, Ganss R. CpG motifs as proinflammatory factors render autochthonous tumors permissive for infiltration and destruction. J Immunol. 2004;172(10):5861–9.

    Article  CAS  PubMed  Google Scholar 

  31. Sakemura R, Cox MJ, Hansen MJ, Hefazi M, Roman CM, Schick KJ, et al. Targeting cancer associated fibroblasts in the bone marrow prevents resistance to chimeric antigen receptor T cell therapy in multiple myeloma. Blood. 2019;134:865.

    Article  Google Scholar 

  32. Keshavarz M, Miri SM, Behboudi E, Arjeini Y, Dianat-Moghadam H, Ghaemi A. Oncolytic virus delivery modulated immune responses toward cancer therapy: challenges and perspectives. Int Immunopharmacol. 2022;108: 108882.

    Article  CAS  PubMed  Google Scholar 

  33. Jhawar SR, Thandoni A, Bommareddy PK, Hassan S, Kohlhapp FJ, Goyal S, et al. Oncolytic viruses—natural and genetically engineered cancer immunotherapies. Front Oncol. 2017;7:202.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schäfer S, Weibel S, Donat U, Zhang Q, Aguilar RJ, Chen NG, et al. Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors. BMC Cancer. 2012;12:1–9.

    Article  Google Scholar 

  35. Kleijn A, Kloezeman J, Treffers-Westerlaken E, Fulci G, Leenstra S, Dirven C, et al. The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity. PLoS ONE. 2014;9(5):e97495.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sette P, Amankulor N, Li A, Marzulli M, Leronni D, Zhang M, et al. GBM-targeted oHSV armed with matrix metalloproteinase 9 enhances anti-tumor activity and animal survival. Molecular Therapy-Oncolytics. 2019;15:214–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M, Alemany R. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther. 2010;18(7):1275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez-Quintanilla J, He D, Wakimoto H, Alemany R, Shah K. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol Ther. 2015;23(1):108–18.

    Article  CAS  PubMed  Google Scholar 

  39. Ehrig K, Kilinc MO, Chen NG, Stritzker J, Buckel L, Zhang Q, et al. Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68. J Transl Med. 2013;11:1–15.

    Article  Google Scholar 

  40. Jung B-K, Ko HY, Kang H, Hong J, Ahn HM, Na Y, et al. Relaxin-expressing oncolytic adenovirus induces remodeling of physical and immunological aspects of cold tumor to potentiate PD-1 blockade. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-000763.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hu Z, Gerseny H, Zhang Z, Chen Y-J, Berg A, Zhang Z, et al. Oncolytic adenovirus expressing soluble TGFβ receptor II-Fc-mediated inhibition of established bone metastases: A safe and effective systemic therapeutic approach for breast cancer. Mol Ther. 2011;19(9):1609–18.

    Article  CAS  PubMed Central  Google Scholar 

  42. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol. 2010;17:718–30.

    Article  PubMed  Google Scholar 

  43. Pol JG, Atherton MJ, Stephenson KB, Bridle BW, Workenhe ST, Kazdhan N, et al. Enhanced immunotherapeutic profile of oncolytic virus-based cancer vaccination using cyclophosphamide preconditioning. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-000981.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ghouse SM, Nguyen H-M, Bommareddy PK, Guz-Montgomery K, Saha D. Oncolytic herpes simplex virus encoding IL12 controls triple-negative breast cancer growth and metastasis. Front Oncol. 2020;10:384.

    Article  PubMed Central  Google Scholar 

  45. Wang L, Dunmall LSC, Cheng Z, Wang Y. Remodeling the tumor microenvironment by oncolytic viruses: beyond oncolysis of tumor cells for cancer treatment. J Immunother Cancer. 2022. https://doi.org/10.1136/jitc-2021-004167.

    Article  PubMed  PubMed Central  Google Scholar 

  46. de Sostoa J, Fajardo CA, Moreno R, Ramos MD, Farrera-Sal M, Alemany R. Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J Immunother Cancer. 2019;7(1):1–15.

    Article  Google Scholar 

  47. Ma J, Ramachandran M, Jin C, Quijano-Rubio C, Martikainen M, Yu D, et al. Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer. Cell Death Dis. 2020;11(1):48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Packiriswamy N, Upreti D, Zhou Y, Khan R, Miller A, Diaz RM, et al. Oncolytic measles virus therapy enhances tumor antigen-specific T-cell responses in patients with multiple myeloma. Leukemia. 2020;34(12):3310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu B, Robinson M, Han Z, Branston R, English C, Reay P, et al. ICP34. 5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10(4):292–303.

    Article  CAS  PubMed  Google Scholar 

  50. Ahmed J, Chard LS, Yuan M, Wang J, Howells A, Li Y, et al. A new oncolytic Vaccinia virus augments antitumor immune responses to prevent tumor recurrence and metastasis after surgery. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2019-000415.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Keshavarz M, Nejad ASM, Esghaei M, Bokharaei-Salim F, Dianat-Moghadam H, Keyvani H, et al. Oncolytic Newcastle disease virus reduces growth of cervical cancer cell by inducing apoptosis. Saudi J Biol Sci. 2020;27(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  52. McGray AR, Huang R-Y, Battaglia S, Eppolito C, Miliotto A, Stephenson KB, et al. Oncolytic Maraba virus armed with tumor antigen boosts vaccine priming and reveals diverse therapeutic response patterns when combined with checkpoint blockade in ovarian cancer. J Immunother Cancer. 2019;7:1–16.

    Article  Google Scholar 

  53. Samson A, Scott KJ, Taggart D, West EJ, Wilson E, Nuovo GJ, et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med. 2018;10(422):7577.

    Article  Google Scholar 

  54. Leung EY, McNeish IA. Strategies to optimise oncolytic viral therapies: the role of natural killer cells. Viruses. 2021;13(8):1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Niemann J, Woller N, Brooks J, Fleischmann-Mundt B, Martin NT, Kloos A, et al. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun. 2019;10(1):3236.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li X-T, Peng H, He J, Zhang Z, Gan L, Wu P, et al. Nanoparticle-delivered therapeutic agents targeting the tumor microenvironment for antitumor therapy. Discov Med. 2021;32(166):93–107.

    PubMed  Google Scholar 

  57. Chesney JA, Puzanov I, Ross MI, Collichio FA, Milhem MM, Chen L, et al. Primary results from a randomized (1: 1), open-label phase II study of talimogene laherparepvec (T) and ipilimumab (I) vs I alone in unresected stage IIIB-IV melanoma. Am Soc Clin Oncol. 2017. https://doi.org/10.1200/JCO.2017.35.15_suppl.9509.

    Article  Google Scholar 

  58. Dummer R, Gyorki D, Hyngstrom J, Berger A, Conry R, Demidov L, et al. Neoadjuvant talimogene laherparepvec plus surgery versus surgery alone for resectable stage IIIB–IVM1a melanoma: a randomized, open-label, phase 2 trial. Nat Med. 2021;27(10):1789–96.

    Article  CAS  PubMed  Google Scholar 

  59. Kelly CM, Antonescu CR, Bowler T, Munhoz R, Chi P, Dickson MA, et al. Objective response rate among patients with locally advanced or metastatic sarcoma treated with talimogene laherparepvec in combination with pembrolizumab: a phase 2 clinical trial. JAMA Oncol. 2020;6(3):402–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RH, Michielin O, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170(6):1109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bourgeois-Daigneault M-C, Roy DG, Aitken AS, El Sayes N, Martin NT, Varette O, et al. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci Transl Med. 2018;10(422):eaao1641.

    Article  PubMed  Google Scholar 

  62. Mahmoudi R, Dianat-Moghadam H, Poorebrahim M, Siapoush S, Poortahmasebi V, Salahlou R, et al. Recombinant immunotoxins development for HER2-based targeted cancer therapies. Cancer Cell Int. 2021;21:1–17.

    Article  Google Scholar 

  63. Sun F, Guo ZS, Gregory AD, Shapiro SD, Xiao G, Qu Z. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2019-000294.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang G, Kang X, Chen KS, Jehng T, Jones L, Chen J, et al. An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat Commun. 2020;11(1):1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vijayakumar G, Palese P, Goff PH. Oncolytic Newcastle disease virus expressing a checkpoint inhibitor as a radioenhancing agent for murine melanoma. EBioMedicine. 2019;49:96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moon EK, Wang L-CS, Bekdache K, Lynn RC, Lo A, Thorne SH, et al. Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines. Oncoimmunology. 2018;7(3):e1395997.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shaw AR, Porter CE, Watanabe N, Tanoue K, Sikora A, Gottschalk S, et al. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer. Mol Ther. 2017;25(11):2440–51.

    Article  Google Scholar 

  68. Tanoue K, Rosewell Shaw A, Watanabe N, Porter C, Rana B, Gottschalk S, et al. Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumorslocal PD-L1 blockade enhances CAR T-cell therapeutic effect. Can Res. 2017;77(8):2040–51.

    Article  CAS  Google Scholar 

  69. Watanabe K, Luo Y, Da T, Guedan S, Ruella M, Scholler J, et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI insight. 2018. https://doi.org/10.1172/jci.insight.99573.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL. Viral subversion of the immune system. Annu Rev Immunol. 2000;18(1):861–926.

    Article  CAS  PubMed  Google Scholar 

  71. Shahgolzari M, Dianat-Moghadam H, Fiering S. Multifunctional plant virus nanoparticles in the next generation of cancer immunotherapies. Semin Cancer Biol. 2022. https://doi.org/10.1016/j.semcancer.2021.07.018.

    Article  PubMed  Google Scholar 

  72. Shahgolzari M, Dianat-Moghadam H, Yavari A, Fiering SN, Hefferon K. Multifunctional plant virus nanoparticles for targeting breast cancer tumors. Vaccines. 2022;10(9):1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liao JB, Publicover J, Rose JK, DiMaio D. Single-dose, therapeutic vaccination of mice with vesicular stomatitis virus expressing human papillomavirus type 16 E7 protein. Clin Vaccine Immunol. 2008;15(5):817–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kantoff PW, Gulley JL, Pico-Navarro C. Revised overall survival analysis of a phase II, randomized, double-blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. J Clinical Oncol. 2017;35(1):124.

    Article  Google Scholar 

  75. Bridle BW, Boudreau JE, Lichty BD, Brunellière J, Stephenson K, Koshy S, et al. Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther. 2009;17(10):1814–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

TZ: Conceptualization, investigation, and writing original draft. SAP, RShH. HM HAF, and FK Sh: Investigation, original/revised draft writing. SK Sh and WL: writing review & editing, visualization, supervision, and project management. All coauthors approved the final version of the manuscript.

Corresponding authors

Correspondence to Wenxue Xiang or Sepideh Karkon Shayan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Pakmehr, S.A., Shahhosseini, R. et al. Oncolytic viruses improve cancer immunotherapy by reprogramming solid tumor microenvironment. Med Oncol 41, 8 (2024). https://doi.org/10.1007/s12032-023-02233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02233-0

Keywords

Navigation