Skip to main content

Advertisement

Log in

Molecular insight into renal cancer and latest therapeutic approaches to tackle it: an updated review

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Renal cell carcinoma (RCC) is one of the most lethal genitourinary cancers, with the highest mortality rate, and may remain undetected throughout its development. RCC can be sporadic or hereditary. Exploring the underlying genetic abnormalities in RCC will have important implications for understanding the origins of nonhereditary renal cancers. The treatment of RCC has evolved over centuries from the era of cytokines to targeted therapy to immunotherapy. A surgical cure is the primary treatment modality, especially for organ-confined diseases. Furthermore, the urologic oncology community focuses on nephron-sparing surgical approaches and ablative procedures when small renal masses are detected incidentally in conjunction with interventional radiologists. In addition to new combination therapies approved for RCC treatment, several trials have been conducted to investigate the potential benefits of certain drugs. This may lead to durable responses and more extended survival benefits for patients with metastatic RCC (mRCC). Several approved drugs have reduced the mortality rate of patients with RCC by targeting VEGF signaling and mTOR. This review better explains the signaling pathways involved in the RCC progression, oncometabolites, and essential biomarkers in RCC that can be used for its diagnosis. Further, it provides an overview of the characteristics of RCC carcinogenesis to assist in combating treatment resistance, as well as details about the current management and future therapeutic options. In the future, multimodal and integrated care will be available, with new treatment options emerging as we learn more about the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The articles analyzed during the current study are available in the literature and listed in the references.

Code availability

Not applicable.

References

  1. Kathuria-Prakash N, Drolen C, Hannigan CA, Drakaki A. Immunotherapy and metastatic renal cell carcinoma: a review of new treatment approaches. Life Basel. 2021;12(1):24.

    PubMed  PubMed Central  Google Scholar 

  2. Lotan Y, et al. Renal-cell carcinoma risk estimates based on participants in the prostate, lung, colorectal, and ovarian cancer screening trial and national lung screening trial. Urol Oncol. 2016;34(4):167.e9-16.

    PubMed  Google Scholar 

  3. Hunt JD, van der Hel OL, McMillan GP, Boffetta P, Brennan P. Renal cell carcinoma in relation to cigarette smoking: meta-analysis of 24 studies. Int J Cancer. 2005;114(1):101–8.

    PubMed  CAS  Google Scholar 

  4. Ljungberg B, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24.

    PubMed  Google Scholar 

  5. Meyer AR, Allaf ME, Gorin MA. Epidemiology and risk factors of renal cell carcinoma. In: Gorin M, Allaf M, editors. Diagnosis and surgical management of renal tumors. Cham: Springer; 2019.

    Google Scholar 

  6. Oto J, et al. Urinary microRNAs: looking for a new tool in diagnosis, prognosis, and monitoring of renal cancer. Curr Urol Rep. 2020;21(2):11.

    PubMed  Google Scholar 

  7. Bhatt JR, Finelli A. Landmarks in the diagnosis and treatment of renal cell carcinoma. Nat Rev Urol. 2014;11(9):517–25.

    PubMed  Google Scholar 

  8. Jones JM, et al. Setting research priorities for kidney cancer. Eur Urol. 2017;72(6):861–4.

    PubMed  Google Scholar 

  9. Rossi SH, Klatte T, Usher-Smith J, Stewart GD. Epidemiology and screening for renal cancer. World J Urol. 2018;36(9):1341–53.

    PubMed  PubMed Central  Google Scholar 

  10. Delahunt B, et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol. 2013;37(10):1490–504.

    PubMed  Google Scholar 

  11. Comprehensive molecular characterization of papillary renal-cell carcinoma. NEJM 374(2):135–145, 2015.

  12. Yamazaki K, Sakamoto M, Ohta T, Kanai Y, Ohki M, Hirohashi S. Overexpression of KIT in chromophobe renal cell carcinoma. Oncogene. 2003;22(6):847–52.

    PubMed  CAS  Google Scholar 

  13. Kaelin WG Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 2008;8(11):865–73.

    PubMed  CAS  Google Scholar 

  14. U. Food and D. Administration, "FDA approves avelumab plus axitinib for renal cell carcinoma," ed, 2021.

  15. Ellimoottil C, et al. New modalities for evaluation and surveillance of complex renal cysts. J Urol. 2014;192(6):1604–11.

    PubMed  Google Scholar 

  16. Gray RE, Harris GT. Renal cell carcinoma: diagnosis and management. Am Fam Phys. 2019;99(3):179–84.

    Google Scholar 

  17. Shah S, Watnick T, Atta MG. Not all renal cysts are created equal. Lancet. 2010;376(9745):1024.

    PubMed  Google Scholar 

  18. Capitanio U, Montorsi F. Renal cancer. Lancet. 2016;387(10021):894–906.

    PubMed  Google Scholar 

  19. Braun DA, et al. Beyond conventional immune-checkpoint inhibition—novel immunotherapies for renal cell carcinoma. Nat Rev Clin Oncol. 2021;18(4):199–214.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Singh D. Current updates and future perspectives on the management of renal cell carcinoma. Life Sci. 2021;264:118632.

    PubMed  CAS  Google Scholar 

  21. Bui TO, Dao VT, Nguyen VT, Feugeas JP, Pamoukdjian F, Bousquet G. Genomics of clear-cell renal cell carcinoma: a systematic review and meta-analysis. Eur Urol. 2022;81(4):349–61.

    PubMed  CAS  Google Scholar 

  22. Bosma NA, et al. Efficacy and safety of first-line systemic therapy for metastatic renal cell carcinoma: a systematic review and network meta-analysis. Eur Urol Open Sci. 2022;37:14–26.

    PubMed  PubMed Central  Google Scholar 

  23. Karner C, Kew K, Wakefield V, Masento N, Edwards SJ. Targeted therapies for previously treated advanced or metastatic renal cell carcinoma: systematic review and network meta-analysis. BMJ Open. 2019;9(3):e024691.

    PubMed  PubMed Central  Google Scholar 

  24. Pandey J, Syed W. Renal Cancer. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2022.

  25. Ravaud A, et al. Adjuvant Sunitinib in high-risk renal-cell carcinoma after nephrectomy. N Engl J Med. 2016;375(23) 2246–54.

    PubMed  CAS  Google Scholar 

  26. Naomi B, et al. Adjuvant sunitinib or sorafenib for high-risk non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind placebo-controlled randomised phase 3 trial. The Lancet. 2016;387(10032):2008–16.

    Google Scholar 

  27. Motzer J, et al. Randomized phase III trial of adjuvant pazopanib versus placebo after nephrectomy in patients with localized or locally advanced renal cell carcinoma. J Clin Oncol. 2017;35(35) 3916–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Gross-Goupil M, et al. Axitinib versus placebo as an adjuvant treatment of renal cell carcinoma: results from the phase III randomized ATLAS trial. Ann Oncol. 2018;29(12) 2371–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. (2021, 2023). SEER cancer stat facts: kidney and renal pelvis cancer.

  30. E. M. Ferlay JSI, Dikshit R. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11. http://globocan.iarc.fr (2013)

  31. Makino T, et al. Epidemiology and prevention of renal cell carcinoma. Cancers (Basel). 2022;14(16):4059.

    PubMed  CAS  Google Scholar 

  32. Scholtes MP, Alberts AR, Iflé IG, Verhagen PC, van der Veldt AA, Zuiverloon TC. Biomarker-oriented therapy in bladder and renal cancer. Int J Mol Sci. 2021;22(6):2832.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F. International variations and trends in renal cell carcinoma incidence and mortality. Eur Urol. 2015;67(3):519–30.

    PubMed  Google Scholar 

  34. Levi F, et al. The changing pattern of kidney cancer incidence and mortality in Europe. BJU Int. 2008;101(8):949–58.

    PubMed  Google Scholar 

  35. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.

    PubMed  Google Scholar 

  36. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    PubMed  Google Scholar 

  37. Thompson RH, et al. Renal cell carcinoma in young and old patients–is there a difference? J Urol. 2008;180(4):1262–6 (discussion 1266).

    PubMed  PubMed Central  Google Scholar 

  38. Yong C, Stewart GD, Frezza C. Oncometabolites in renal cancer. Nat Rev Nephrol. 2020;16(3):156–72.

    PubMed  CAS  Google Scholar 

  39. Network CGAR. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.

    Google Scholar 

  40. Du W, et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun. 2017;8(1):1769.

    PubMed  PubMed Central  Google Scholar 

  41. Mullen AR, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2011;481(7381):385–8.

    PubMed  PubMed Central  Google Scholar 

  42. Wang H, et al. Oncometabolite L-2-hydroxyglurate directly induces vasculogenic mimicry through PHLDB2 in renal cell carcinoma. Int J Cancer. 2021;148(7):1743–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Shanmugasundaram K, Nayak B, Shim EH, Livi CB, Block K, Sudarshan S. The oncometabolite fumarate promotes pseudohypoxia through noncanonical activation of NF-κB signaling. J Biol Chem. 2014;289(35):24691–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. McEvoy CR, et al. SDH-deficient renal cell carcinoma associated with biallelic mutation in succinate dehydrogenase A: comprehensive genetic profiling and its relation to therapy response. NPJ Precis Oncol. 2018;2:9.

    PubMed  PubMed Central  Google Scholar 

  45. Shim EH, et al. L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov. 2014;4(11):1290–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol. 2010;7(5):277–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Haake SM, Weyandt JD, Rathmell WK. Insights into the genetic basis of the renal cell carcinomas from the cancer genome atlas. Mol Cancer Res. 2016;14(7):589–98.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Schmidt LS, Linehan WM. Genetic predisposition to kidney cancer. Semin Oncol. 2016;43(5):566–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Chakraborty S, Balan M, Sabarwal A, Choueiri TK, Pal S. Metabolic reprogramming in renal cancer: events of a metabolic disease. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188559.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Wettersten HI, et al. Grade-dependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis. Cancer Res. 2015;75(12):2541–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Abu Aboud O, et al. Glutamine addiction in kidney cancer suppresses oxidative stress and can be exploited for real-time imaging. Cancer Res. 2017;77(23):6746–58.

    PubMed  CAS  Google Scholar 

  52. Horiguchi A, Asano T, Asano T, Ito K, Sumitomo M, Hayakawa M. Fatty acid synthase over expression is an indicator of tumor aggressiveness and poor prognosis in renal cell carcinoma. J Urol. 2008;180(3):1137–40.

    PubMed  CAS  Google Scholar 

  53. Chung KT, Gadupudi GS. Possible roles of excess tryptophan metabolites in cancer. Environ Mol Mutagen. 2011;52(2):81–104.

    PubMed  CAS  Google Scholar 

  54. Kim K, Taylor SL, Ganti S, Guo L, Osier MV, Weiss RH. Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer. OMICS. 2011;15(5):293–303.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Ganti S, et al. Kidney tumor biomarkers revealed by simultaneous multiple matrix metabolomics analysis. Cancer Res. 2012;72(14):3471–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Yoon C-Y, et al. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer. 2007;120(4):897–905.

    PubMed  CAS  Google Scholar 

  57. Felipe-Abrio B, Verdugo-Sivianes EM, Carnero A. c-MYB- and PGC1a-dependent metabolic switch induced by MYBBP1A loss in renal cancer. Mol Oncol. 2019;13(7):1519–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Marei HE, et al. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021;21(1):703.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–31.

    PubMed  CAS  Google Scholar 

  60. Tomasini R, et al. TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem. 2003;278(39):37722–9.

    PubMed  CAS  Google Scholar 

  61. Lu X, Nannenga B, Donehower LA. PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev. 2005;19(10):1162–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Marchenko ND, Wolff S, Erster S, Becker K, Moll UM. Monoubiquitylation promotes mitochondrial p53 translocation. Embo j. 2007;26(4):923–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Wu H, Leng RP. UBE4B, a ubiquitin chain assembly factor, is required for MDM2-mediated p53 polyubiquitination and degradation. Cell Cycle. 2011;10(12):1912–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Ringshausen I, O’Shea CC, Finch AJ, Swigart LB, Evan GI. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell. 2006;10(6):501–14.

    PubMed  CAS  Google Scholar 

  65. Gurova KV, Hill JE, Razorenova OV, Chumakov PM, Gudkov AV. p53 pathway in renal cell carcinoma is repressed by a dominant mechanism. Cancer Res. 2004;64(6):1951–8.

    PubMed  CAS  Google Scholar 

  66. Wu H, et al. mTOR activation initiates renal cell carcinoma development by coordinating ERK and p38MAPK. Cancer Res. 2021;81(12):3174–86.

    PubMed  CAS  Google Scholar 

  67. Kang JH, et al. Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy. Cell Death Dis. 2016;7(3):2163.

    Google Scholar 

  68. Zhang H, et al. p53β: a new prognostic marker for patients with clear-cell renal cell carcinoma from 5.3 years of median follow-up. Carcinogenesis. 2018;39(3):368–74.

    PubMed  CAS  Google Scholar 

  69. Song W, et al. Expression of p53isoforms in renal cell carcinoma. Chin Med J. 2009;122(08):921–6.

    PubMed  CAS  Google Scholar 

  70. Miricescu D, et al. PI3K/AKT/mTOR signalling pathway involvement in renal cell carcinoma pathogenesis (Review). Exp Ther Med. 2021;21(5):540.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Sato Y, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 2013;45(8):860–7.

    PubMed  CAS  Google Scholar 

  72. Brugge J, Hung MC, Mills GB. A new mutational AKTivation in the PI3K pathway. Cancer Cell. 2007;12(2):104–7.

    PubMed  CAS  Google Scholar 

  73. Chen W, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539(7627):112–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Baba M, et al. Loss of von Hippel-Lindau protein causes cell density dependent deregulation of CyclinD1 expression through hypoxia-inducible factor. Oncogene. 2003;22(18):2728–38.

    PubMed  CAS  Google Scholar 

  75. Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 2004;24(1):200–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Schödel J, et al. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol. 2016;69(4):646–57.

    PubMed  Google Scholar 

  77. Hudson CC, et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22(20):7004–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Koul H, et al. Molecular aspects of renal cell carcinoma: a review. Am J Cancer Res. 2011;1(2):240–54.

    PubMed  Google Scholar 

  79. Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruïne AP. VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010;221(2):125–38.

    PubMed  CAS  Google Scholar 

  80. Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75.

    PubMed  CAS  Google Scholar 

  81. Memmott RM, Dennis PA. Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal. 2009;21(5):656–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101.

    PubMed  CAS  Google Scholar 

  83. Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27(13):2278–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Ilha J, do Espírito-Santo CC, do Freitas GR. mTOR signaling pathway and protein synthesis: from training to aging and muscle autophagy. Adv Exp Med Biol. 2018;1088:139–51.

    PubMed  CAS  Google Scholar 

  85. Ayuk SM, Abrahamse H. mTOR signaling pathway in cancer targets photodynamic therapy in vitro. Cells. 2019;8(5):431.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Zhang J, Yu XH, Yan YG, Wang C, Wang WJ. PI3K/Akt signaling in osteosarcoma. Clin Chim Acta. 2015;444:182–92.

    PubMed  CAS  Google Scholar 

  87. Gao M, et al. Site-specific activation of AKT protects cells from death induced by glucose deprivation. Oncogene. 2014;33(6):745–55.

    PubMed  CAS  Google Scholar 

  88. Kumar A, Kumari N, Gupta V, Prasad R. Renal cell carcinoma: molecular aspects. Indian J Clin Biochem. 2018;33(3):246–54.

    PubMed  CAS  Google Scholar 

  89. Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal. 2011;23(10):1515–27.

    PubMed  CAS  Google Scholar 

  90. Neshat MS, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA. 2001;98(18):10314–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Jamaspishvili T, et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018;15(4):222–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Lin A, Piao HL, Zhuang L, Sarbassov dos D, Ma L, Gan B. FoxO transcription factors promote AKT Ser473 phosphorylation and renal tumor growth in response to pharmacologic inhibition of the PI3K-AKT pathway. Cancer Res. 2014;74(6):1682–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Cox MA, et al. Beyond neurotransmission: acetylcholine in immunity and inflammation. J Intern Med. 2020;287(2):120–33.

    PubMed  CAS  Google Scholar 

  94. Tie P, Cheng J, Xue MX, Yin J, Fu G, Duan WL. SLC18A3 promoted renal cancer development through acetylcholine/cAMP signaling. Am J Cancer Res. 2022;12(9):4279–89.

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Wang X, et al. Decrease of phosphorylated proto-oncogene CREB at Ser 133 site inhibits growth and metastatic activity of renal cell cancer. Expert Opin Ther Targets. 2015;19(7):985–95.

    PubMed  CAS  Google Scholar 

  96. Wang X, et al. Cyclic AMP responsive element-binding protein induces metastatic renal cell carcinoma by mediating the expression of matrix metallopeptidase-2/9 and proteins associated with epithelial-mesenchymal transition. Mol Med Rep. 2017;15(6):4191–8.

    PubMed  Google Scholar 

  97. Naviglio S, et al. Protein kinase A as a biological target in cancer therapy. Expert Opin Ther Targets. 2009;13(1):83–92.

    PubMed  CAS  Google Scholar 

  98. Friedrich M, et al. CREB1 is affected by the microRNAs miR-22-3p, miR-26a-5p, miR-27a-3p, and miR-221-3p and correlates with adverse clinicopathological features in renal cell carcinoma. Sci Rep. 2020;10(1):6499.

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP signaling in cancer: a PKA-CREB and EPAC-centric approach. Cells. 2022;11(13):2020.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Hanusek K, Rybicka B, Popławski P, Adamiok-Ostrowska A, Głuchowska K, Piekiełko-Witkowska A, Bogusławska J. TGFβ1 affects the renal cancer miRNome and regulates tumor cells proliferation. Int J Mol Med. 2022;49(4):1–4

  101. Moustakas A, Heldin CH. The regulation of TGFbeta signal transduction. Development. 2009;136(22):3699–714.

    PubMed  CAS  Google Scholar 

  102. Boguslawska J, Kryst P, Poletajew S, Piekielko-Witkowska A. TGF-β and microRNA interplay in genitourinary cancers. Cells. 2019;8(12):1619.

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Boström AK, Lindgren D, Johansson ME, Axelson H. Effects of TGF-β signaling in clear cell renal cell carcinoma cells. Biochem Biophys Res Commun. 2013;435(1):126–33.

    PubMed  Google Scholar 

  104. Bao JM, et al. SPARC is a key mediator of TGF-β-induced renal cancer metastasis. J Cell Physiol. 2021;236(3):1926–38.

    PubMed  CAS  Google Scholar 

  105. Garcia JA, Cowey CL, Godley PA. Renal cell carcinoma. Curr Opin Oncol. 2009;21(3):266–71.

    PubMed  CAS  Google Scholar 

  106. Sültmann H, et al. Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clin Cancer Res. 2005;11(2 Pt 1):646–55.

    PubMed  Google Scholar 

  107. Yao M, et al. VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J Natl Cancer Inst. 2002;94(20):1569–75.

    PubMed  CAS  Google Scholar 

  108. Mickley A, Kovaleva O, Kzhyshkowska J, Gratchev A. Molecular and immunologic markers of kidney cancer-potential applications in predictive, preventive and personalized medicine. Epma j. 2015;6:20.

    PubMed  PubMed Central  Google Scholar 

  109. Daugan MV, et al. Complement C1s and C4d as prognostic biomarkers in renal cancer: emergence of noncanonical functions of C1s. Cancer Immunol Res. 2021;9(8):891–908.

    PubMed  CAS  Google Scholar 

  110. Roumenina LT, et al. Tumor Cells Hijack Macrophage-Produced Complement C1q to Promote Tumor Growth. Cancer Immunol Res. 2019;7(7):1091–105.

    PubMed  CAS  Google Scholar 

  111. Ding YL, Sun SF, Zhao GL. COL5A2 as a potential clinical biomarker for gastric cancer and renal metastasis. Medicine (Baltimore). 2021;100(7):e24561.

    PubMed  CAS  Google Scholar 

  112. Zhang F, et al. HJURP is a prognostic biomarker for clear cell renal cell carcinoma and is linked to immune infiltration. Int Immunopharmacol. 2021;99:107899.

    PubMed  CAS  Google Scholar 

  113. Caliò A, Brunelli M, Gobbo S, Argani P, Munari E, Netto G, Martignoni G, Cathepsin K. A novel diagnostic and predictive biomarker for renal tumors. Cancers. 2021;13(10):2441.

    PubMed  PubMed Central  Google Scholar 

  114. Arance E, et al. Determination of exosome mitochondrial DNA as a biomarker of renal cancer aggressiveness. Cancers Basel. 2021;14(1):199.

    PubMed  PubMed Central  Google Scholar 

  115. Li F, Aljahdali IAM, Zhang R, Nastiuk KL, Krolewski JJ, Ling X. Kidney cancer biomarkers and targets for therapeutics: survivin (BIRC5), XIAP, MCL-1, HIF1α, HIF2α, NRF2, MDM2, MDM4, p53, KRAS and AKT in renal cell carcinoma. J Exp Clin Cancer Res. 2021;40(1):254.

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Gebbia V, et al. Stereotactic radiotherapy for the treatment of patients with oligo-progressive metastatic renal cell carcinoma receiving vascular endothelial growth factor receptor tyrosine kinase inhibitor: data from the real world. Anticancer Res. 2020;40(12):7037–43.

    PubMed  CAS  Google Scholar 

  117. Schmidt AL, Tabakin AL, Singer EA, Choueiri TK, McKay RR. Next steps: sequencing therapies in metastatic kidney cancer in the contemporary era. Am Soc Clin Oncol Educ Book. 2021;41:1–11.

    PubMed  Google Scholar 

  118. Robson CJ, Churchill BM, Anderson W. The results of radical nephrectomy for renal cell carcinoma. J Urol. 1969;101(3):297–301.

    PubMed  CAS  Google Scholar 

  119. Permpongkosol S, Bagga HS, Romero FR, Sroka M, Jarrett TW, Kavoussi LR. Laparoscopic versus open partial nephrectomy for the treatment of pathological T1N0M0 renal cell carcinoma: a 5-year survival rate. J Urol. 2006;176(5):1984–8 (discussion 1988-9).

    PubMed  Google Scholar 

  120. Kyllo RL, et al. Prospective multi-center study of oncologic outcomes of robot-assisted partial nephrectomy for pT1 renal cell carcinoma. BMC Urol. 2012;12:11.

    PubMed  PubMed Central  Google Scholar 

  121. Mickisch GH, Garin A, van Poppel H, de Prijck L, Sylvester R. Radical nephrectomy plus interferon-alfa-based immunotherapy compared with interferon alfa alone in metastatic renal-cell carcinoma: a randomised trial. Lancet. 2001;358(9286):966–70.

    PubMed  CAS  Google Scholar 

  122. Flanigan RC, et al. Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N Engl J Med. 2001;345(23):1655–9.

    PubMed  CAS  Google Scholar 

  123. Krabbe LM, Bagrodia A, Margulis V, Wood CG. Surgical management of renal cell carcinoma. Semin Intervent Radiol. 2014;31(1):27–32.

    PubMed  PubMed Central  Google Scholar 

  124. Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther. 2006;28(11):1779–802.

    PubMed  CAS  Google Scholar 

  125. Mattei J, da Silva RD, Sehrt D, Molina WR, Kim FJ. Targeted therapy in metastatic renal carcinoma. Cancer Lett. 2014;343(2):156–60.

    PubMed  CAS  Google Scholar 

  126. Huang JJ, Hsieh JJ. The therapeutic landscape of renal cell carcinoma: from the dark age to the golden age. Semin Nephrol. 2020;40(1):28–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Rizzo M, Porta C. Sunitinib in the treatment of renal cell carcinoma: an update on recent evidence. Ther Adv Urol. 2017;9(8):195–207.

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Motzer RJ, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.

    PubMed  CAS  Google Scholar 

  129. Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol. 2007;25(7):884–96.

    PubMed  CAS  Google Scholar 

  130. Gan HK, Seruga B, Knox JJ. Sunitinib in solid tumors. Expert Opin Invest Drugs. 2009;18(6):821–34.

    CAS  Google Scholar 

  131. Welsh SJ, Fife K. Pazopanib for the treatment of renal cell carcinoma. Future Oncol. 2015;11(8):1169–79.

    PubMed  CAS  Google Scholar 

  132. Zivi A, Cerbone L, Recine F, Sternberg CN. Safety and tolerability of pazopanib in the treatment of renal cell carcinoma. Expert Opin Drug Saf. 2012;11(5):851–9.

    PubMed  CAS  Google Scholar 

  133. Escudier B, Gore M. Axitinib for the management of metastatic renal cell carcinoma. Drugs R D. 2011;11(2):113–26.

    PubMed  Google Scholar 

  134. Keating GM. Axitinib: a review in advanced renal cell carcinoma. Drugs. 2015;75(16):1903–13.

    PubMed  CAS  Google Scholar 

  135. Suyama K, Iwase H. Lenvatinib: a promising molecular targeted agent for multiple cancers. Cancer Control. 2018;25(1):1073274818789361.

    PubMed  PubMed Central  Google Scholar 

  136. Yakes FM, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.

    PubMed  CAS  Google Scholar 

  137. Abdelaziz A, Vaishampayan U. Cabozantinib for renal cell carcinoma: current and future paradigms. Curr Treat Opt Oncol. 2017;18(3):18.

    Google Scholar 

  138. Negrier S, et al. Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. Groupe Français d’Immunothérapie. N Engl J Med. 1998;338(18):1272–8.

    PubMed  CAS  Google Scholar 

  139. Shi W, Yao X, Fu Y, Wang Y. Interferon-α and its effects on cancer cell apoptosis. Oncol Lett. 2022;24(1):235.

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol. 1995;13(3):688–96.

    PubMed  CAS  Google Scholar 

  141. McDermott DF, et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol. 2005;23(1):133–41.

    PubMed  CAS  Google Scholar 

  142. Yang JC, et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol. 2003;21(16):3127–32.

    PubMed  CAS  Google Scholar 

  143. Kawashima H, Kimura Y. Present and future perspectives on immunotherapy for advanced renal cell carcinoma: Going to the core or beating around the bush? J Kidney Cancer VHL. 2015;2(2):55–63.

    PubMed  PubMed Central  Google Scholar 

  144. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 2018;8:86.

    PubMed  PubMed Central  Google Scholar 

  146. Mohsenzadegan M, et al. The potential of T cell immunoglobulin and mucin-domain containing-3 (Tim-3) in designing novel immunotherapy for bladder cancer. Endocr Metab Immune Disord Drug Targets. 2021;21(12):2131–46.

    PubMed  CAS  Google Scholar 

  147. Kim MC, et al. Updates on immunotherapy and immune landscape in renal clear cell carcinoma. Cancers (Basel). 2021;13(22):5856.

    PubMed  CAS  Google Scholar 

  148. Sun C, et al. CD133 expression in renal cell carcinoma (RCC) is correlated with nuclear hypoxia-inducing factor 1α (HIF-1α). J Cancer Res Clin Oncol. 2012;138(10):1619–24.

    PubMed  CAS  Google Scholar 

  149. Riella LV, Paterson AM, Sharpe AH, Chandraker A. Role of the PD-1 pathway in the immune response. Am J Transplant. 2012;12(10):2575–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  150. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727–42.

    PubMed  PubMed Central  CAS  Google Scholar 

  151. Brahmer JR, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2023;41(4):715–23.

    PubMed  CAS  Google Scholar 

  152. Liebl MC, Hofmann TG. Identification of responders to immune checkpoint therapy: which biomarkers have the highest value? J Eur Acad Dermatol Venereol. 2019;33(Suppl 8):52–6.

    PubMed  CAS  Google Scholar 

  153. Rini BI, et al. Pembrolizumab plus Axitinib versus Sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–27.

    PubMed  CAS  Google Scholar 

  154. Rizvi NA, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16(3):257–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  155. De Sousa Linhares A, et al. Therapeutic PD-L1 antibodies are more effective than PD-1 antibodies in blocking PD-1/PD-L1 signaling. Sci Rep. 2019;9(1):11472.

    PubMed  PubMed Central  Google Scholar 

  156. Herbst RS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  157. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–9.

    PubMed  CAS  Google Scholar 

  158. Doroshow DB, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18(6):345–62.

    PubMed  CAS  Google Scholar 

  159. Simeone JC, Nordstrom BL, Patel K, Klein AB. Treatment patterns and overall survival in metastatic non-small-cell lung cancer in a real-world, US setting. Future Oncol. 2019;15(30):3491–502.

    PubMed  CAS  Google Scholar 

  160. Stewart R, et al. Identification and characterization of MEDI4736, an antagonistic anti-PD-L1 monoclonal antibody. Cancer Immunol Res. 2015;3(9):1052–62.

    PubMed  CAS  Google Scholar 

  161. Massard C, et al. Safety and efficacy of Durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016;34(26):3119–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  162. Collins JM, Gulley JL. Product review: avelumab, an anti-PD-L1 antibody. Hum Vaccin Immunother. 2019;15(4):891–908.

    PubMed  Google Scholar 

  163. Choueiri TK, et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol. 2018;19(4):451–60.

    PubMed  CAS  Google Scholar 

  164. Larkin JMG, et al. Avelumab (MSB0010718C; anti-PD-L1) in combination with axitinib as first-line treatment for patients with advanced renal cell carcinoma. J Clin Oncol. 2016;34(15_suppl):4580.

    Google Scholar 

  165. Suárez C, et al. Phase II study investigating the safety and efficacy of Savolitinib and Durvalumab in metastatic papillary renal cancer (CALYPSO). J Clin Oncol. 2023;41(14):2493–502.

    PubMed  Google Scholar 

  166. Voss MH, et al. A randomized phase II study of MEDI0680 in Combination with Durvalumab versus Nivolumab monotherapy in patients with advanced or metastatic clear-cell renal cell carcinoma. Clin Cancer Res. 2022;28(14):3032–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  167. Escudier B, et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol. 2010;28(13):2144–50.

    PubMed  CAS  Google Scholar 

  168. Escudier B, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125–34.

    PubMed  CAS  Google Scholar 

  169. Rini BI, et al. Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol. 2009;27(27):4462–8.

    PubMed  CAS  Google Scholar 

  170. Motzer RJ, et al. Nivolumab versus Everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Choueiri TK, et al. Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann Oncol. 2020;31(8):1030–9.

    PubMed  CAS  Google Scholar 

  172. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–41.

    PubMed  Google Scholar 

  173. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14(8):561–84.

    PubMed  CAS  Google Scholar 

  174. Brunet JF, et al. A new member of the immunoglobulin superfamily–CTLA-4. Nature. 1987;328(6127):267–70.

    PubMed  CAS  Google Scholar 

  175. Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229(1):12–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  176. Linsley PS, et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science. 1992;257(5071):792–5.

    PubMed  CAS  Google Scholar 

  177. Egen JG, Allison JP. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity. 2002;16(1):23–35.

    PubMed  CAS  Google Scholar 

  178. Mullard A. FDA approves first immunotherapy combo. Nat Rev Drug Discov. 2015;14(11):739–739.

    Google Scholar 

  179. Powderly J, et al. CA-170, a first in class oral small molecule dual inhibitor of immune checkpoints PD-L1 and VISTA, demonstrates tumor growth inhibition in pre-clinical models and promotes T cell activation in Phase 1 study. Ann Oncol. 2017;28:v405–6.

    Google Scholar 

  180. Klapper JA, et al. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma : a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer. 2008;113(2):293–301.

    PubMed  CAS  Google Scholar 

  181. Charych DH, et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res. 2016;22(3):680–90.

    PubMed  CAS  Google Scholar 

  182. Diab A, et al. NKTR-214 (CD122-biased agonist) plus nivolumab in patients with advanced solid tumors: Preliminary phase 1/2 results of PIVOT. J Clin Oncol. 2018;36(15_suppl):3006.

    Google Scholar 

  183. Tugues S, et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2015;22(2):237–46.

    PubMed  CAS  Google Scholar 

  184. Janiszewska AD, Poletajew S, Wasiutyński A. Spontaneous regression of renal cell carcinoma. Contemp Oncol (Pozn). 2013;17(2):123–7.

    PubMed  Google Scholar 

  185. Choueiri TK, et al. Cabozantinib versus sunitinib as initial therapy for metastatic renal cell carcinoma of intermediate or poor risk (Alliance A031203 CABOSUN randomised trial): progression-free survival by independent review and overall survival update. Eur J Cancer. 2018;94:115–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  186. Gore ME, et al. Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: an expanded-access trial. Lancet Oncol. 2009;10(8):757–63.

    PubMed  CAS  Google Scholar 

  187. Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am. 2000;6(Suppl 1):S55–7.

    PubMed  Google Scholar 

  188. Fishman M, et al. Overall survival by clinical risk category for high dose interleukin-2 (HD IL-2) treated patients with metastatic renal cell cancer (mRCC): data from the PROCLAIM(SM) registry. J Immunother Cancer. 2019;7(1):84.

    PubMed  PubMed Central  CAS  Google Scholar 

  189. Rini BI, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet. 2019;393(10189):2404–15.

    PubMed  Google Scholar 

  190. Motzer RJ, et al. NCCN Guidelines Insights: kidney cancer, version 2.2020. J Natl Compr Cancer Netw. 2019;17(11):1278–85.

    CAS  Google Scholar 

  191. Albiges L, et al. Updated European Association of Urology Guidelines on renal cell carcinoma: immune checkpoint inhibition is the new backbone in first-line treatment of metastatic clear-cell renal cell carcinoma. Eur Urol. 2019;76(2):151–6.

    PubMed  Google Scholar 

  192. Motzer RJ, et al. Avelumab plus Axitinib versus Sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1103–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  193. Motzer RJ, et al. Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23(7):888–98.

    PubMed  PubMed Central  CAS  Google Scholar 

  194. Motzer RJ, et al. Nivolumab plus Ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  195. Escudier B, Barthelemy P, Ravaud A, Negrier S, Needle MN, Albiges L. Tivozanib combined with nivolumab: Phase Ib/II study in metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2018;36(6_suppl):618.

    Google Scholar 

  196. Amin A, et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2014;32(15_suppl):5010.

    Google Scholar 

  197. Chowdhury S, et al. A phase I/II study to assess the safety and efficacy of pazopanib (PAZ) and pembrolizumab (PEM) in patients (pts) with advanced renal cell carcinoma (aRCC). J Clin Oncol. 2017;35(15_suppl):4506.

    Google Scholar 

  198. Meza L, Govindarajan A, Feng M, Pal SK. Live bacterial supplementation for improving treatment response in metastatic renal cell carcinoma. Clin Transl Med. 2022;12(7):e948.

    PubMed  PubMed Central  CAS  Google Scholar 

  199. Dizman N, et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat Med. 2022;28(4):704–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  200. Derosa L, et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur Urol. 2020;78(2):195–206.

    PubMed  CAS  Google Scholar 

  201. Owens JA, et al. Lactobacillus rhamnosus GG orchestrates an antitumor immune response. Cell Mol Gastroenterol Hepatol. 2021;12(4):1311–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  202. He Y, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8(+) T cell immunity. Cell Metab. 2021;33(5):988-1000.e7.

    PubMed  CAS  Google Scholar 

  203. Routy B, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.

    PubMed  CAS  Google Scholar 

  204. Cuvillier O. The therapeutic potential of HIF-2 antagonism in renal cell carcinoma. Transl Androl Urol. 2017;6(1):131–3.

    PubMed  PubMed Central  Google Scholar 

  205. Lee C-H, et al. Nivolumab plus cabozantinib in patients with non-clear cell renal cell carcinoma: Results of a phase 2 trial. J Clin Oncol. 2021;39(15):4509.

    Google Scholar 

  206. Jonasch E, et al. Phase II study of the oral HIF-2α inhibitor MK-6482 for Von Hippel-Lindau disease–associated renal cell carcinoma. J Clin Oncol. 2020;38(15_Suppl):5003.

    Google Scholar 

  207. Pal SK, et al. Atezolizumab plus cabozantinib versus cabozantinib monotherapy for patients with renal cell carcinoma after progression with previous immune checkpoint inhibitor treatment (CONTACT-03): a multicentre, randomised, open-label, phase 3 trial. Lancet. 2023;402(10397):185–95.

    PubMed  CAS  Google Scholar 

  208. Choueiri TK, Albiges L, Powles T, Scheffold C, Wang F, Motzer RJ. A phase III study (COSMIC-313) of cabozantinib (C) in combination with nivolumab (N) and ipilimumab (I) in patients (pts) with previously untreated advanced renal cell carcinoma (aRCC) of intermediate or poor risk. J Clin Oncol. 2020;38(6_Suppl):767.

    Google Scholar 

  209. Zhang T, et al. PDIGREE: An adaptive phase III trial of PD-inhibitor nivolumab and ipilimumab (IPI-NIVO) with VEGF TKI cabozantinib (CABO) in metastatic untreated renal cell cancer (Alliance A031704). J Clin Oncol. 2021;39(6_Suppl):366.

    CAS  Google Scholar 

  210. Tannir NM, et al. PIVOT-09: A phase III randomized open-label study of bempegaldesleukin (NKTR-214) plus nivolumab versus sunitinib or cabozantinib (investigator’s choice) in patients with previously untreated advanced renal cell carcinoma (RCC). J Clin Oncol. 2020;38(6_Suppl):763.

    Google Scholar 

  211. Koshkin VS, Rini BI. Emerging therapeutics in refractory renal cell carcinoma. Expert Opin Pharmacother. 2016;17(9):1225–32.

    PubMed  CAS  Google Scholar 

  212. Chen F, et al. Multilevel genomics-based taxonomy of renal cell carcinoma. Cell Rep. 2016;14(10):2476–89.

    PubMed  PubMed Central  CAS  Google Scholar 

  213. Barata PC, Rini BI. Treatment of renal cell carcinoma: current status and future directions. CA Cancer J Clin. 2017;67(6):507–24.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the VIT, Vellore, Tamil Nadu, India, for providing all the facilities to carry out this work.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, RM, AVG; resources and data curation, RM, AVG; writing—original draft preparation, RM, AVG; writing—review and editing, RM, AVG; visualization, RM, AVG; supervision, RM, AVG; project administration, RM, AVG; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Abilash Valsala Gopalakrishnan.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

We assure you this manuscript has not been published in part or whole and is not under consideration for publication elsewhere in any language. All the authors have thoroughly studied the manuscript and approved its consent and submission to the "Medical Oncology" journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, R., Gopalakrishnan, A.V. Molecular insight into renal cancer and latest therapeutic approaches to tackle it: an updated review. Med Oncol 40, 355 (2023). https://doi.org/10.1007/s12032-023-02225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02225-0

Keywords

Navigation