Skip to main content

Advertisement

Log in

Single-cell transcriptomic analysis reveals crucial oncogenic signatures and its associative cell types involved in gastric cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The intricate association of oncogenic markers negatively impacts accurate gastric cancer diagnosis and leads to the proliferation of mortality rate. Molecular heterogeneity is inevitable in determining gastric cancer's progression state with multiple cell types involved. Identification of pathogenic gene signatures is imperative to understand the disease's etiology. This study demonstrates a systematic approach to identifying oncogenic gastric cancer genes linked with different cell types. The raw counts of adjacent normal and gastric cancer samples are subjected to a quality control step. The dimensionality reduction and multidimensional clustering are performed using Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) techniques. The adjacent normal and gastric cancer sample cell clusters are annotated with the Human Primary Cell Atlas database using the “SingleR.” Cellular state transition between the distinct groups is characterized using trajectory analysis. The ligand–receptor interaction between Vascular Endothelial Growth Factor (VEGF) and cell clusters unveils crucial molecular pathways in gastric cancer progression. Chondrocytes, Smooth muscle cells, and fibroblast cell clusters contain genes contributing to poor survival rates based on hazard ratio during survival analysis. The GC-related oncogenic signatures are isolated by comparing the gene set with the DisGeNET database. Twelve gastric cancer biomarkers (SPARC, KLF5, HLA-DRB1, IGFBP3, TIMP3, LGALS1, IGFBP6, COL18A1, F3, COL4A1, PDGFRB, COL5A2) are linked with gastric cancer and further validated through gene set enrichment analysis. Drug–gene interaction found PDGFRB, interacting with various anti-cancer drugs, as a potential inhibitor for gastric cancer. Further investigations on these molecular signatures will assist the development of precision therapeutics, promising longevity among gastric cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data are available with the corresponding author, GPDC.

Code availability

https://github.com/karthiksekaran/singlecell/

Abbreviations

scRNA-seq:

Single-cell RNA sequencing

GC:

Gastric Cancer

GEO:

Gene Expression Omnibus

PCA:

Principal Component Analysis

PC:

Principal Component

HPCA:

Human Primary Cell Atlas

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

STRING:

Search Tool for the Retrieval of Interacting Genes

DGIdb:

Drug–Gene Interaction Database

UMAP:

Uniform Manifold Approximation and Projection

DO:

Disease Ontology

PPI:

Protein–Protein Interaction Network

PDGFR:

Platelet-derived growth Factor Receptor

KM Plot:

Kaplan–Meier Plot

VEGF:

Vascular Endothelial Growth Factor

BP:

Biological Process

CC:

Cellular Component

MF:

Molecular Function

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2021;71(3):209–49.

    PubMed  Google Scholar 

  2. Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, Bray F. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020;159(1):335–49.

    Article  PubMed  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2018;68(6):394–424.

    PubMed  Google Scholar 

  4. Guo Y, Cao XS, Zhou MG, Yu B. Gastric microbiota in gastric cancer: Different roles of Helicobacter pylori and other microbes. Front Cell Infect Microbiol. 2023;12:1975.

    Article  Google Scholar 

  5. Balakrishnan M, George R, Sharma A, Graham DY. Changing trends in stomach cancer throughout the world. Curr Gastroenterol Rep. 2017;19:1.

    Article  Google Scholar 

  6. Jun JK, Choi KS, Lee HY, Suh M, Park B, Song SH, Jung KW, Lee CW, Choi IJ, Park EC, Lee D. Effectiveness of the Korean National Cancer Screening Program in reducing gastric cancer mortality. Gastroenterology. 2017;152(6):1319–28.

    Article  PubMed  Google Scholar 

  7. Yang L, Ying X, Liu S, Lyu G, Xu Z, Zhang X, Li H, Li Q, Wang N, Ji J. Gastric cancer: Epidemiology, risk factors and prevention strategies. Chin J Cancer Res. 2020;32(6):695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khanderia E, Markar SR, Acharya A, Kim Y, Kim YW, Hanna GB. The influence of gastric cancer screening on the stage at diagnosis and survival. J Clin Gastroenterol. 2016;50(3):190–7.

    Article  PubMed  Google Scholar 

  9. Nashimoto A, Akazawa K, Isobe Y, Miyashiro I, Katai H, Kodera Y, Tsujitani S, Seto Y, Furukawa H, Oda I, Ono H. Gastric cancer treated in 2002 in Japan: 2009 annual report of the JGCA nationwide registry. Gastric Cancer. 2013;16:1–27.

    Article  PubMed  Google Scholar 

  10. Tanabe S, Ishido K, Matsumoto T, Kosaka T, Oda I, Suzuki H, Fujisaki J, Ono H, Kawata N, Oyama T, Takahashi A. Long-term outcomes of endoscopic submucosal dissection for early gastric cancer: a multicenter collaborative study. Gastric Cancer. 2017;20:45–52.

    Article  PubMed  Google Scholar 

  11. Wong MC, Huang J, Chan PS, Choi P, Lao XQ, Chan SM, Teoh A, Liang P. Global incidence and mortality of gastric cancer, 1980–2018. JAMA Netw Open. 2021. https://doi.org/10.1001/jamanetworkopen.2021.18457.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xia JY, Aadam AA. Advances in screening and detection of gastric cancer. J Surg Oncol. 2022;125(7):1104–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jiang T, Mei L, Yang X, Sun T, Wang Z, Ji Y. Biomarkers of gastric cancer: current advancement. Heliyon. 2022;4: e10899.

    Article  Google Scholar 

  14. Collatuzzo G, Pelucchi C, Negri E, López-Carrillo L, Tsugane S, Hidaka A, Shigueaki Hamada G, Hernández-Ramírez RU, López-Cervantes M, Malekzadeh R, Pourfarzi F. Exploring the interactions between Helicobacter pylori (Hp)infection and other risk factors of gastric cancer: A pooled analysis in the Stomach cancer Pooling (StoP) Project. Int J Cancer. 2021;149(6):1228–38.

    Article  CAS  PubMed  Google Scholar 

  15. Deng W, Jin L, Zhuo H, Vasiliou V, Zhang Y. Alcohol consumption and risk of stomach cancer: A meta-analysis. Chem Biol Interact. 2021;336: 109365.

    Article  CAS  PubMed  Google Scholar 

  16. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and preventiongastric cancer. Cancer Epidemiol Biomark Prev. 2014;23(5):700–13.

    Article  Google Scholar 

  17. Sitarz R, Skierucha M, Mielko J, Offerhaus GJ, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi E, Roland JT, Barlow BJ, O’Neal R, Rich AE, Nam KT, Shi C, Goldenring JR. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut. 2014;63(11):1711–20.

    Article  PubMed  Google Scholar 

  19. Mills JC. Stomach organ and cell lineage differentiation: from embryogenesis to adult homeostasis. Cell Mol Gastroenterol Hepatol. 2016;2:546.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li WQ, Ma JL, Zhang L, Brown LM, Li JY, Shen L, Pan KF, Liu WD, Hu Y, Han ZX, Crystal-Mansour S. Effects of Helicobacter pylori treatment on gastric cancer incidence and mortality in subgroups. JNCI. 2014. https://doi.org/10.1093/jnci/dju116.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.

    Article  CAS  PubMed  Google Scholar 

  22. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL. Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2019;16(5):282–95.

    Article  PubMed  Google Scholar 

  24. Boussioutas A, Li H, Liu J, Waring P, Lade S, Holloway AJ, Taupin D, Gorringe K, Haviv I, Desmond PV, Bowtell DD. Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Can Res. 2003;63(10):2569–77.

    CAS  Google Scholar 

  25. Guo Y, Nie Q, MacLean AL, Li Y, Lei J, Li S. Multiscale modeling of inflammation-induced tumorigenesis reveals competing oncogenic and oncoprotective roles for inflammation. Can Res. 2017;77(22):6429–41.

    Article  CAS  Google Scholar 

  26. Lee HJ, Nam KT, Park HS, Kim MA, LaFleur BJ, Aburatani H, Yang HK, Kim WH, Goldenring JR. Gene expression profiling of metaplastic lineages identifies CDH17 as a prognostic marker in early stage gastric cancer. Gastroenterology. 2010;139(1):213–25.

    Article  CAS  PubMed  Google Scholar 

  27. Li R, Ma T, Gu J, Liang X, Li S. Imbalanced network biomarkers for traditional Chinese medicine Syndrome in gastritis patients. Sci Rep. 2013;3(1):1543.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vecchi M, Nuciforo P, Romagnoli S, Confalonieri S, Pellegrini C, Serio G, Quarto M, Capra M, Roviaro GC, Contessini Avesani E, Corsi C. Gene expression analysis of early and advanced gastric cancers. Oncogene. 2007;26(29):4284–94.

    Article  CAS  PubMed  Google Scholar 

  29. Mills JC, Andersson N, Hong CV, Stappenbeck TS, Gordon JI. Molecular characterization of mouse gastric epithelial progenitor cells. Proc Natl Acad Sci USA. 2002;99:14819–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sousa JF, Nam KT, Petersen CP, Lee HJ, Yang HK, Kim WH, Goldenring JR. miR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the upregulation of metaplasia markers in the stomach. Gut. 2016;65(6):914–24.

    Article  CAS  PubMed  Google Scholar 

  31. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chung NC, Storey JD. Statistical significance of variables driving systematic variation in high-dimensional data. Bioinformatics. 2015;31(4):545–54.

    Article  CAS  PubMed  Google Scholar 

  33. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, Naikawadi RP, Wolters PJ, Abate AR, Butte AJ. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20(2):163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics. 2013;14(1):1–3.

    Article  Google Scholar 

  35. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017;14(3):309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using Cell Chat. Nat Commun. 2021;12(1):1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dwivedi B, Mumme H, Satpathy S, Bhasin SS, Bhasin M. Survival Genie, a web platform for survival analysis across pediatric and adult cancers. Sci Rep. 2022;12(1):3069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F, Furlong LI. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkw943.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jia P, Pei G, Zhao Z. CNet: a multi-omics approach to detecting clinically associated, combinatory genomic signatures. Bioinformatics. 2019;35(24):5207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12.

    Article  CAS  PubMed  Google Scholar 

  41. Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, Griffith M, Griffith OL, Wagner AH. Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2021;49(D1):D1144–51.

    Article  CAS  PubMed  Google Scholar 

  42. Oya Y, Hayakawa Y, Koike K. Tumor microenvironment in gastric cancers. Cancer Sci. 2020;111(8):2696–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li L, Zhu Z, Zhao Y, Zhang Q, Wu X, Miao B, Cao J, Fei S. FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarcinoma revealed by microarray and bioinformatics. Sci Rep. 2019;9(1):1–9.

    Google Scholar 

  44. Bilici M, Okcu N, Cayır K, Pirim I, Tekin SB, Gundogdu C. Distribution of HLA tissue groups in patients with gastric cancer. Eur J Med. 2010;42(1):9.

    Google Scholar 

  45. Su CW. TIMP-3 as a therapeutic target for cancer. Ther Adv Med Oncol. 2019. https://doi.org/10.1177/1758835919864247.

    Article  PubMed  PubMed Central  Google Scholar 

  46. You X, Wu J, Wang Y, Liu Q, Cheng Z, Zhao X, Liu G, Huang C, Dai J, Zhou Y, Chen D. Galectin-1 promotes vasculogenic mimicry in gastric adenocarcinoma via the Hedgehog/GLI signaling pathway. Aging (Albany NY). 2020;12(21):21837.

    Article  CAS  PubMed  Google Scholar 

  47. Liu B, Xiao X, Lin Z, Lou Y, Zhao L. PDGFRB is a potential prognostic biomarker and correlated with immune infiltrates in gastric cancer. Cancer Biomark. 2022;34(2):251–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Vellore Institute of Technology, India authorities, for providing the necessary support in completing the manuscript. The authors acknowledge the Indian Council of Medical Research (ICMR), the Government of India agency, for the research grants (No. BMI/12(13)/2021, ID No: 2021-6359) and (No. VIR/COVID-19/31/2021/ECD-I, ID. NO: 2021-5570).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The study's design involved KS, RPV, HZ, AEL, and GPDC. KS and RPV were involved in the data collection and experiment. KS and RPV acquired, analyzed, and interpreted the results. HZ, AEL, and GPDC supervised the entire study. KS, RPV, HZ, and AEL drafted the manuscript. All authors edited and approved the submitted version of the article.

Corresponding author

Correspondence to C. George Priya Doss.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not required for this type of study.

Consent to participate

Not applicable.

Consent for publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 317 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekaran, K., Varghese, R.P., Zayed, H. et al. Single-cell transcriptomic analysis reveals crucial oncogenic signatures and its associative cell types involved in gastric cancer. Med Oncol 40, 305 (2023). https://doi.org/10.1007/s12032-023-02174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02174-8

Keywords

Navigation