Skip to main content

Advertisement

Log in

Advances in the molecular mechanism and targeted therapy of radioactive-iodine refractory differentiated thyroid cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Most patients with differentiated thyroid cancer have a good prognosis after radioactive iodine-131 treatment, but there are still a small number of patients who are not sensitive to radioiodine treatment and may subsequently show disease progression. Therefore, radioactive-iodine refractory differentiated thyroid cancer treated with radioiodine usually shows reduced radioiodine uptake. Thus, when sodium iodine symporter expression, basolateral membrane localization and recycling degradation are abnormal, radioactive-iodine refractory differentiated thyroid cancer may occur. In recent years, with the deepening of research into the pathogenesis of this disease, an increasing number of molecules have become or are expected to become therapeutic targets. The application of corresponding inhibitors or combined treatment regimens for different molecular targets may be effective for patients with advanced radioactive-iodine refractory differentiated thyroid cancer. Currently, some targeted drugs that can improve the progression-free survival of patients with radioactive-iodine refractory differentiated thyroid cancer, such as sorafenib and lenvatinib, have been approved by the FDA for the treatment of radioactive-iodine refractory differentiated thyroid cancer. However, due to the adverse reactions and drug resistance caused by some targeted drugs, their application is limited. In response to targeted drug resistance and high rates of adverse reactions, research into new treatment combinations is being carried out; in addition to kinase inhibitor therapy, gene therapy and rutin-assisted iodine-131 therapy for radioactive-iodine refractory thyroid cancer have also made some progress. Thus, this article mainly focuses on sodium iodide symporter changes leading to the main molecular mechanisms in radioactive-iodine refractory differentiated thyroid cancer, some targeted drug resistance mechanisms and promising new treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FDA:

Food and drug administration

ATA:

American Thyroid Association

RAIR-DTC:

Radioactive-iodine refractory differentiated thyroid cancer

RAI:

Radioiodine

NIS:

Sodium iodine symporter

TERT:

Telomerase reverse transcriptase

TGF-β1:

Transforming growth factor-β1

SMAD3:

Mothers against DPP homolog 3 (Drosophila)

WNT1:

Wingless-type MMTV integration site family, member 1

ROS:

Reactive oxygen species

FDG:

β-2- [18 F]-Fluoro-2-deoxy-D-glucose

SLC5A5:

Solute carrier family 5

SCRIB:

Scribbled homolog (Drosophila)

AP-1A:

Adaptor protein complex-1A

AP-1B:

Adaptor protein complex-1B

TGN:

Trans-Golgi network

PTTG:

Pituitary tumor transforming gene

PBF/PTTG1IP:

Pituitary tumor transforming gene binding factor

TCF/LEF:

T-cell Factor/Lymphoid Enhancing Factor

DACT2:

Dapper, antagonist of beta-catenin, homolog 2 (Xenopus laevis)

HIF-1α:

Hypoxia-inducible factor-1α

KDM1A/LSD1:

Histone lysine-specific demethylase1

APC2:

Adenomatosis polyposis coli 2

DDK1:

Dickkopf-related protein 1

NOX1:

NADPH oxidase 1

NRX:

Nucleoredoxin

ARF4:

ADP-ribosylation factor 4

VCP:

Valosin protein

ERAD:

Endoplasmic reticulum-associated protein degradation

PM:

Plasma membrane

IGF2BP2:

Insulin-like growth factor 2 mRNA binding protein 2

RUNX2:

Runt-related transcription factor 2

SAHA:

N-Hydroxy-N'-phenyloctanediamide

PAX8:

Paired box gene 8

NKX2-1:

NK2 homeobox 1

TSHR:

Thyroid stimulating hormone receptor

TSH:

Thyroid stimulating hormone

PIGU:

One of the components of the glycosyl phosphatidylinositol aminositol transaminase (GPIT) complex

CREB3L1:

CAMP responsive element binding protein 3-like 1

mTORC1/2:

Mammalian target of rapamycin compelx1/2

NMTC:

Nonmyelinary thyroid cancer

AMPK:

Adenosine 5’-monophosphate (AMP)-activated protein kinase

ULK1:

Unc-51-like kinase 1 (C. elegans)

TFEB:

Transcription factor E3

CARM1:

Coactivator-associated arginine methyltransferase 1

SKP2:

S-phase kinase-associated protein 2 (p45)

SHP:

Small heterodimer partner

FOXO3:

Forkhead box O3

WT1:

Wilms’ tumor 1

FOXP3:

Forkhead box P3

NADPH:

(Reduced) Nicotinamide adenine dinucleotide phosphate

NOX4:

NADPH oxidase 1

DNMT1:

Recombinant DNA methyltransferase 1

HDAC:

Histone deacetylase

Src:

Nonreceptor tyrosine kinase

HMGB1:

High mobility group protein B1

ERS:

Endoplasmic reticulum stress

UPR:

Unfolded protein response

LC3-I:

Microtubule-associated protein 1 light chain 3

PERK:

PKR-like ER kinase

eIF2α:

Eukaryotic initiation factor 2α

ATF4:

Recombinant activating transcription factor4

CHOP:

C/EBP-homologous protein

ERO1α:

ER REDOX hormone 1α

IP3R1:

Inositol 1,4,5-triphosphate receptor 1

CaMMII:

Calmodulin-dependent protein kinase II

NOX2:

NADPH oxidase 2

SIRT6:

Sirtuin (silent mating type information regulation 2 homolog) 6 (S. cerevisiae)

NRROS:

Negative regulator of reactive oxygen species

TME:

Tumor microenvironment

MDSCs:

Myeloid-derived suppressor cells

Gpx4:

Glutathione peroxidase-4

GSH:

Glutathione

SLC3A2:

Solute carrier family 3 member 2

SLC7A11:

Solute carrier family 7 member 11

PHKG2:

Phosphorylase kinase G2

PUFAs:

Polyunsaturated fatty acids

ACSL4:

Acyl-CoA synthetase long-chain family 4

PTGS2:

Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)

IR:

Ionizing radiation

NRF2:

NFE2-related factor 2

NFE2L2:

Nuclear factor (erythroid-derived 2)-like 2

ESCC:

Esophageal squamous cell carcinoma

EZH2:

Enhancer of zeste homolog 2

ERBB2:

V-erb-b2 erythroblastic leukemia viral oncogene homolog 2

ICB:

Immune checkpoint blockade

CTLA4:

Cytotoxic T-lymphocyte antigen 4

PD1:

Programmed cell death protein 1

PDL1/2:

Programmed cell death-ligand 1/2

TBX3:

T-box transcription factor 3

CXCR2:

CXC-chemokine receptor 2

PMN-MDSCs:

Polymorphonuclear myeloid suppressor cells

RGI:

Reporter gene imaging

AIDS:

Acquired/immunodeficiency/syndrome

cAMP:

Cyclic adenosine monophosphate

CREB:

CAMP-response element binding protein

VnNp:

Vanadium pentoxide nanoparticles

References

  1. Shank JB, Are C, Wenos CD. Thyroid cancer: global burden and trends. India J Surg Oncol. 2022;13(1):40–5.

    Article  Google Scholar 

  2. Laha D, Nilubol N, Boufraqech M. New therapies for advanced thyroid cancer. Front Endocrinol (Lausanne). 2020;11:82.

    Article  PubMed  Google Scholar 

  3. Gild ML, et al. Multikinase inhibitors: a new option for the treatment of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):617–24.

    Article  CAS  PubMed  Google Scholar 

  4. Jin Y, et al. Radioiodine refractory differentiated thyroid cancer. Crit Rev Oncol Hematol. 2018;125:111–20.

    Article  PubMed  Google Scholar 

  5. Martín M, et al. Implications of Na+/I- symporter transport to the plasma membrane for thyroid hormonogenesis and radioiodide therapy. J Endocrine Soc. 2019;3(1):222–34.

    Article  Google Scholar 

  6. Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics. 2021;11(13):6251–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu J, et al. Radioactive iodine-refractory differentiated thyroid cancer and redifferentiation therapy. Endocrinol Metab (Seoul). 2019;34(3):215–25.

    Article  CAS  PubMed  Google Scholar 

  8. Gao H, et al. Mediator complex subunit 16 is down-regulated in papillary thyroid cancer, leading to increased transforming growth factor-beta signaling and radioiodine resistance. J Biol Chem. 2020;295(31):10726–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lan L, et al. Inhibiting beta-catenin expression promotes efficiency of radioiodine treatment in aggressive follicular thyroid cancer cells probably through mediating NIS localization. Oncol Rep. 2017;37(1):426–34.

    Article  PubMed  Google Scholar 

  10. Gilbert-Sirieix M, et al. Wnt/beta-catenin signaling pathway is a direct enhancer of thyroid transcription factor-1 in human papillary thyroid carcinoma cells. PLoS ONE. 2011;6(7): e22280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang X, et al. TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid cancer. J Nucl Med. 2017;58(2):258–65.

    Article  CAS  PubMed  Google Scholar 

  12. Ganzleben I, Neurath MF, Becker C. Autophagy in cancer therapy-molecular mechanisms and current clinical advances. Cancers (Basel). 2021;13(21).

  13. Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 2019;9(9):1167–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jia L, Chen Y, Chen F, Lv J, Li Y, Hou F, Yang Z, Deng Z. Small activating RNA-activated NIS gene promotes 131I uptake and inhibits thyroid cancer via AMPK/mTOR pathway. Pathol Res Pract. 2022;229:153735.

    Article  CAS  PubMed  Google Scholar 

  15. Cazarin J, Dupuy C, de Carvalho DP. Redox homeostasis in thyroid cancer: implications in Na(+)/I(-) symporter (NIS) regulation. Int J Mol Sci. 2022;23(11).

  16. Hasan A, et al. Crosstalk between ROS and autophagy in tumorigenesis: understanding the multifaceted paradox. Front Oncol. 2022;12: 852424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reinecke MJ, et al. Second primary malignancies induced by radioactive iodine treatment of differentiated thyroid carcinoma—a critical review and evaluation of the existing evidence. Eur J Nucl Med Mol Imaging. 2022;49(9):3247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haugen BR, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Faria M, et al. Analysis of NIS plasma membrane interactors discloses key regulation by a SRC/RAC1/PAK1/PIP5K/EZRIN pathway with potential implications for radioiodine re-sensitization therapy in thyroid cancer. Cancers (Basel). 2021;13(21).

  20. Faria M, et al. Adherens junction integrity is a critical determinant of sodium iodide symporter residency at the plasma membrane of thyroid cells. Cancers (Basel). 2022;14(21).

  21. Martin M, et al. The PDZ protein SCRIB regulates sodium/iodide symporter (NIS) expression at the basolateral plasma membrane. FASEB J. 2021;35(8): e21681.

    Article  CAS  PubMed  Google Scholar 

  22. Koumarianou P, et al. Basolateral sorting of the sodium/iodide symporter is mediated by adaptor protein 1 clathrin adaptor complexes. Thyroid. 2022;32(10):1259–70. https://doi.org/10.1089/thy.2022.0163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martín M, Modenutti CP, Peyret V, Geysels RC, Darrouzet E, Pourcher T, Masini-Repiso AM, Martí MA, Carrasco N, Nicola JP. A carboxy-terminal monoleucine-based motif participates in the basolateral targeting of the Na+/I- symporter. Endocrinology. 2019;160(1):156–68.

    Article  PubMed  Google Scholar 

  24. Smith VE, Read ML, Turnell AS, Watkins RJ, Watkinson JC, Lewy GD, Fong JC, James SR, Eggo MC, Boelaert K, Franklyn JA, McCabe CJ. A novel mechanism of sodium iodide symporter repression in differentiated thyroid cancer. J Cell Sci. 2009;122(Pt 18):3393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith VE, Sharma N, Watkins RJ, Read ML, Ryan GA, Kwan PP, Martin A, Watkinson JC, Boelaert K, Franklyn JA, McCabe CJ. Manipulation of PBF/PTTG1IP phosphorylation status; a potential new therapeutic strategy for improving radioiodine uptake in thyroid and other tumors. J Clin Endocr Metab. 2013;98(7):2876–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sastre-Perona A, Santisteban P. Role of the wnt pathway in thyroid cancer. Front Endocrinol (Lausanne). 2012;3:31.

    Article  CAS  PubMed  Google Scholar 

  27. Sastre-Perona A, Santisteban P. Wnt-independent role of beta-catenin in thyroid cell proliferation and differentiation. Mol Endocrinol. 2014;28(5):681–95.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhao Z, et al. Methylation of DACT2 promotes papillary thyroid cancer metastasis by activating Wnt signaling. PLoS ONE. 2014;9(11): e112336.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim MH, et al. Hif-1alpha inhibitors could successfully inhibit the progression of differentiated thyroid cancer in vitro. Pharmaceuticals (Basel). 2020;13(9):208.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang W, et al. Knockdown of KDM1A suppresses tumour migration and invasion by epigenetically regulating the TIMP1/MMP9 pathway in papillary thyroid cancer. J Cell Mol Med. 2019;23(8):4933–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang W, et al. KDM1A promotes thyroid cancer progression and maintains stemness through the Wnt/beta-catenin signaling pathway. Theranostics. 2022;12(4):1500–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Funato Y, et al. Nucleoredoxin sustains Wnt/beta-catenin signaling by retaining a pool of inactive dishevelled protein. Curr Biol. 2010;20(21):1945–52.

    Article  CAS  PubMed  Google Scholar 

  33. Kajla S, et al. A crucial role for Nox 1 in redox-dependent regulation of Wnt-beta-catenin signaling. FASEB J. 2012;26(5):2049–59.

    Article  CAS  PubMed  Google Scholar 

  34. Fletcher A, et al. Targeting novel sodium iodide symporter interactors ADP-ribosylation factor 4 and valosin-containing protein enhances radioiodine uptake. Cancer Res. 2020;80(1):102–15.

    Article  CAS  PubMed  Google Scholar 

  35. Read ML, Brookes K, Thornton CEM, Fletcher A, Nieto HR, Alshahrani M, Khan R, de Souza PB, Zha L, Webster JRM, Alderwick LJ, Campbell MJ, Boelaert K, Smith VE, McCabe CJ. Targeting non-canonical pathways as a strategy to modulate the sodium iodide symporter. Cell Chem Biol. 2021;29:502–16.

    Article  PubMed  Google Scholar 

  36. Thompson RJ, et al. Dimerization of the sodium/iodide symporter. Thyroid. 2019;29(10):1485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang X, et al. Identification and validation of m(6)A RNA methylation regulators with clinical prognostic value in Papillary thyroid cancer. Cancer Cell Int. 2020;20:203.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sa R, et al. Targeting IGF2BP2 promotes differentiation of radioiodine refractory papillary thyroid cancer via destabilizing RUNX2 mRNA. Cancers (Basel). 2022;14(5).

  39. Huang G, et al. Epigenetic modification and BRAF gene mutation in thyroid carcinoma. Cancer Cell Int. 2021;21(1):687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Z, et al. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocr Relat Cancer. 2014;21(2):161–73.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheng W, Liu R, Zhu G, Wang H, Xing M. Robust thyroid gene expression and radioiodine uptake induced by simultaneous suppression of BRAF V600E and histone deacetylase in thyroid cancer cells. J Clin Endocr Metab. 2016;101(3):962–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma R, et al. Epigenetic changes during human thyroid cell differentiation. Thyroid. 2020;30(11):1666–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Galrao AL, et al. Methylation levels of sodium-iodide symporter (NIS) promoter in benign and malignant thyroid tumors with reduced NIS expression. Endocrine. 2013;43(1):225–9.

    Article  CAS  PubMed  Google Scholar 

  44. Galrao AL, et al. Hypermethylation of a new distal sodium/iodide symporter (NIS) enhancer (NDE) is associated with reduced NIS expression in thyroid tumors. J Clin Endocrinol Metab. 2014;99(6):E944–52.

    Article  CAS  PubMed  Google Scholar 

  45. Xing M, Usadel H, Cohen Y, Tokumaru Y, Guo Z, Westra WB, Tong BC, Tallini G, Udelsman R, Califano JA, Ladenson PW, Sidransky D. Methylation of the thyroid-stimulating hormone receptor gene in epithelial thyroid tumors: a marker of malignancy and a cause of gene silencing. Cancer Res. 2003;63(9):2316–21.

    CAS  PubMed  Google Scholar 

  46. Khan MS, et al. Epigenetic silencing of TSHR gene in thyroid cancer patients in relation to their BRAF V600E mutation status. Endocrine. 2014;47(2):449–55.

    Article  CAS  PubMed  Google Scholar 

  47. Chung T, et al. Glycosylation of sodium/iodide symporter (NIS) regulates its membrane translocation and radioiodine uptake. PLoS ONE. 2015;10(11): e0142984.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Amit M, et al. Post-translational regulation of radioactive iodine therapy response in papillary thyroid carcinoma. J Natl Cancer Inst. 2017;109(12). https://doi.org/10.1093/jnci/djx092.

  49. Zhang L, Xu S, Cheng X, Wu J, Wang X, Wu L, Yu H, Bao J. Curcumin enhances the membrane trafficking of the sodium iodide symporter and augments radioiodine uptake in dedifferentiated thyroid cancer cells via suppression of the PI3K-AKT signaling pathway. Food Funct. 2021;12(18):8260–73.

    Article  CAS  PubMed  Google Scholar 

  50. Di Giusto P, et al. Transcription factor CREB3L1 regulates the expression of the sodium/iodide symporter (NIS) in rat thyroid follicular cells. Cells. 2022;11(8).

  51. Fernández-Méndez C, Santisteban P. Critical balance between PAX8 and the hippo mediator TAZ determines sodium/iodide symporter expression and function. Thyroid. 2022;32(3):315–25.

    Article  PubMed  Google Scholar 

  52. Fernández-Méndez C, Santisteban P. Hippo pathway mediator TAZ acts as a negative regulator of the sodium iodide symporter. Probl Endokrinol (Mosk). 2016;62(5):51–2.

    Article  Google Scholar 

  53. Boelaert K, et al. PTTG and PBF repress the human sodium iodide symporter. Oncogene. 2007;26(30):4344–56.

    Article  CAS  PubMed  Google Scholar 

  54. Tavares C, et al. mTOR pathway in papillary thyroid carcinoma: different contributions of mTORC1 and mTORC2 complexes for tumor behavior and SLC5A5 mRNA expression. Int J Mol Sci. 2018;19(5):1448.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yan Z, Yangyanqiu W, Shuwen H, Jing M, Haihong L, Gong C, Yin J, Qing Z, Weili G. Downregulation of Rap1GAP expression activates the TGF-β/Smad3 pathway to inhibit the expression of sodium/iodine transporter in papillary thyroid carcinoma cells. Biomed Res Int. 2021;2021:6840642.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xu M, et al. MiR-3121-3p promotes tumor invasion and metastasis by suppressing Rap1GAP in papillary thyroid cancer in vitro. Ann Transl Med. 2020;8(19):1229–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang T, et al. Emerging role of autophagy in anti-tumor immunity: implications for the modulation of immunotherapy resistance. Drug Resist Updat. 2021;56: 100752.

    Article  CAS  PubMed  Google Scholar 

  58. Ishaq M, et al. Autophagy in cancer: recent advances and future directions. Semin Cancer Biol. 2020;66:171–81.

    Article  PubMed  Google Scholar 

  59. Song T, et al. Acetylation modulates LC3 stability and cargo recognition. FEBS Lett. 2019;593(4):414–22.

    Article  CAS  PubMed  Google Scholar 

  60. Plantinga TS, et al. Autophagy activity is associated with membranous sodium iodide symporter expression and clinical response to radioiodine therapy in non-medullary thyroid cancer. Autophagy. 2016;12(7):1195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cazarin JM, Andrade BM, Carvalho DP. AMP-activated protein kinase activation leads to lysome-mediated NA(+)/I(-)-symporter protein degradation in rat thyroid cells. Horm Metab Res. 2014;46(5):313–7.

    Article  CAS  PubMed  Google Scholar 

  62. Jimenez-Mora E, et al. (V600E)BRAF inhibition induces cytoprotective autophagy through AMPK in thyroid cancer cells. Int J Mol Sci. 2021;22(11):6033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dang TT, Back SH. Translation inhibitors activate autophagy master regulators TFEB and TFE3. Int J Mol Sci. 2021;22(21).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu Y, et al. YWHA/14-3-3 proteins recognize phosphorylated TFEB by a noncanonical mode for controlling TFEB cytoplasmic localization. Autophagy. 2019;15(6):1017–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Paquette M, et al. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Autophagy. 2021;17(12):3957–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shin HJ, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534(7608):553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Byun S, et al. A postprandial FGF19-SHP-LSD1 regulatory axis mediates epigenetic repression of hepatic autophagy. EMBO J. 2017;36(12):1755–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang J, et al. Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors. Autophagy. 2018;14(6):1043–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Godet I, et al. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat Commun. 2019;10(1):4862.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Landa I, Hao J, Xu B, Giacalone J, Herbert Z, Blasco MA, Knauf JA, Ghossein R, Fagin JA. Abstract 913: tert mutant promoter mouse model induces cancer progression in BrafV600E-driven thyroid tumors: a novel tool to understand the biology of telomerase-reactivated cancers. Cancer Res. 2022;82(12_Supplement):913–913.

    Article  Google Scholar 

  71. Song H, et al. HIF-1alpha-mediated telomerase reverse transcriptase activation inducing autophagy through mammalian target of rapamycin promotes papillary thyroid carcinoma progression during hypoxia stress. Thyroid. 2021;31(2):233–46.

    Article  CAS  PubMed  Google Scholar 

  72. Chen X, et al. BRAF-activated WT1 contributes to cancer growth and regulates autophagy and apoptosis in papillary thyroid carcinoma. J Transl Med. 2022;20(1):79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dong L, et al. Targeting the interplay of autophagy and ROS for cancer therapy: an updated overview on phytochemicals. Pharmaceuticals (Basel). 2023;16(1):92.

    Article  CAS  PubMed  Google Scholar 

  74. Li JP, et al. miR-133a-3p/FOXP3 axis regulates cell proliferation and autophagy in gastric cancer. J Cell Biochem. 2020;121(5–6):3392–405.

    Article  CAS  PubMed  Google Scholar 

  75. Wang S, et al. MicroRNA-125b interacts with Foxp3 to induce autophagy in thyroid cancer. Mol Ther. 2018;26(9):2295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Song MJ, Park S, Won KY. Expression of beclin-1, an autophagy-related protein, is associated with tumoral FOXP3 expression and Tregs in gastric adenocarcinoma: The function of Beclin-1 expression as a favorable prognostic factor in gastric adenocarcinoma. Pathol Res Pract. 2020;216(5): 152927.

    Article  CAS  PubMed  Google Scholar 

  77. Zarogoulidis P, et al. Autophagy inhibition upregulates CD4(+) tumor infiltrating lymphocyte expression via miR-155 regulation and TRAIL activation. Mol Oncol. 2016;10(10):1516–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ma S, et al. FoxP3 in papillary thyroid carcinoma induces NIS repression through activation of the TGF-beta1/Smad signaling pathway. Tumour Biol. 2016;37(1):989–98.

    Article  CAS  PubMed  Google Scholar 

  79. Castillo-Rivera F, et al. Tumor microenvironment affects exogenous sodium/iodide symporter expression. Transl Oncol. 2021;14(1): 100937.

    Article  CAS  PubMed  Google Scholar 

  80. Tang P, et al. NADPH oxidase NOX4 is a glycolytic regulator through mROS-HIF1alpha axis in thyroid carcinomas. Sci Rep. 2018;8(1):15897.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tang P, et al. Targeting NOX4 disrupts the resistance of papillary thyroid carcinoma to chemotherapeutic drugs and lenvatinib. Cell Death Discov. 2022;8(1):177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Szanto I, Pusztaszeri M, Mavromati M. H2O2 metabolism in normal thyroid cells and in thyroid tumorigenesis: focus on NADPH oxidases. Antioxidants (Basel). 2019;8(5).

  83. Azouzi N, et al. NADPH oxidase NOX4 is a critical mediator of BRAF(V600E)-induced downregulation of the sodium/iodide symporter in papillary thyroid carcinomas. Antioxid Redox Signal. 2017;26(15):864–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhou J, et al. Full-coverage regulations of autophagy by ROS: from induction to maturation. Autophagy. 2021;18(6):1240–55.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, Zhang B, Yang B, Li B, Yang H, Wu Y. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6(37):39839–54.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kaminskyy VO, et al. Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy. 2012;8(7):1032–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022;54(2):91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chai W, et al. HMGB1-mediated autophagy regulates sodium/iodide symporter protein degradation in thyroid cancer cells. J Exp Clin Cancer Res. 2019;38(1):325.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Liu C, Zhang A. ROS-mediated PERK-eIF2alpha-ATF4 pathway plays an important role in arsenite-induced L-02 cells apoptosis via regulating CHOP-DR5 signaling. Environ Toxicol. 2020;35(10):1100–13.

    Article  CAS  PubMed  Google Scholar 

  90. Song S, et al. Intermittent-hypoxia-induced autophagy activation through the ER-stress-related PERK/eIF2alpha/ATF4 pathway is a protective response to pancreatic beta-cell apoptosis. Cell Physiol Biochem. 2018;51(6):2955–71.

    Article  CAS  PubMed  Google Scholar 

  91. Luhr M, et al. The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress. J Biol Chem. 2019;294(20):8197–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Han J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol. 2013;15(5):481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek I. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med. 2016;16(6):533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang Z, et al. The SIRT6-autophagy-warburg effect axis in papillary thyroid cancer. Front Oncol. 2020;10:1265.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fan D, et al. Estrogen receptor alpha induces prosurvival autophagy in papillary thyroid cancer via stimulating reactive oxygen species and extracellular signal regulated kinases. J Clin Endocrinol Metab. 2015;100(4):E561–71.

    Article  CAS  PubMed  Google Scholar 

  96. Liu J, et al. Signal pathway of estrogen and estrogen receptor in the development of thyroid cancer. Front Oncol. 2021;11: 593479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pizzato M, Li M, Vignat J, Laversanne M, Singh D, La Vecchia C, Vaccarella S. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022;10(4):264–72.

    Article  PubMed  Google Scholar 

  98. Gong Z, et al. The isoforms of estrogen receptor alpha and beta in thyroid cancer. Front Oncol. 2022;12: 916804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Naoum GE, et al. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer. 2018;17(1):51.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ferrari SM, et al. Immune and inflammatory cells in thyroid cancer microenvironment. Int J Mol Sci. 2019;20(18).

  101. Liu Q, Sun W, Zhang H. Roles and new insights of macrophages in the tumor microenvironment of thyroid cancer. Front Pharmacol. 2022;13: 875384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Aashiq M, et al. Radioiodine-refractory thyroid cancer: molecular basis of redifferentiation therapies, management, and novel therapies. Cancers (Basel). 2019;11(9).

  103. Silaghi H, et al. State of the art in the current management and future directions of targeted therapy for differentiated thyroid cancer. Int J Mol Sci. 2022;23(7).

  104. Brose MS, Smit JWA, Lin CC, Tori M, Bowles DW, Worden F, Shen DH, Huang SM, Tsai HJ, Alevizaki M, Peeters RP, Takahashi S, Rumyantsev P, Guan R, Babajanyan S, Ozgurdal K, Sugitani I, Pitoia F, Lamartina L. Multikinase inhibitors for the treatment of asymptomatic radioactive iodine-refractory differentiated thyroid cancer: global noninterventional study (RIFTOS MKI). Thyroid. 2022;32(9):1059–68.

    Article  CAS  PubMed  Google Scholar 

  105. Fukuda N, Takahashi S. Clinical indications for treatment with multi-kinase inhibitors in patients with radioiodine-refractory differentiated thyroid cancer. Cancers (Basel). 2021;13(9).

  106. Kim M, Jin M, Jeon MJ, Kim EY, Shin DY, Lim DJ, Kim BH, Kang HC, Kim WB, Shong YK, Kim HK, Kim WG. Lenvatinib compared with sorafenib as a first-line treatment for radioactive iodine-refractory, progressive, differentiated thyroid carcinoma: real-world outcomes in a multicenter retrospective cohort study. Thyroid. 2023;33(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  107. Song E, et al. Lenvatinib for radioactive iodine-refractory differentiated thyroid carcinoma and candidate biomarkers associated with survival: a multicenter study in Korea. Thyroid. 2020;30(5):732–8.

    Article  CAS  PubMed  Google Scholar 

  108. Suzuki K, et al. Efficacy of combination therapy with lenvatinib and radioactive iodine in thyroid cancer preclinical model. Int J Mol Sci. 2022;23(17).

  109. Duke ES, Barone AK, Chatterjee S, Mishra-Kalyani PS, Shen Y-L, Isikwei E, Zhao H, Bi Y, Liu J, Rahman NA, Wearne E, Leighton JK, Stephenson M, Ojofeitimi I, Scepura B, Nair A, Pazdur R, Beaver JA, Singh H. FDA approval summary: cabozantinib for differentiated thyroid cancer. Clin Cancer Res. 2022;28(19):4173–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Riesco-Eizaguirre G, et al. The miR-146b-3p/PAX8/NIS regulatory circuit modulates the differentiation phenotype and function of thyroid cells during carcinogenesis. Cancer Res. 2015;75(19):4119–30.

    Article  CAS  PubMed  Google Scholar 

  111. Ho AL, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wachter S, et al. Selumetinib activity in thyroid cancer cells: modulation of sodium iodide symporter and associated miRNAs. Int J Mol Sci. 2018;19(7):2077.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ho AL, Dedecjus M, Wirth LJ, MichaelTuttle R, Inabnet WB, Tennvall J, Vaisman F, Bastholt L, Gianoukakis AG, Rodien P, Paschke R, Elisei R, Viola D, So K, Carroll D, Hovey T, Thakre B, Fagin JA. Selumetinib plus adjuvant radioactive iodine in patients with high-risk differentiated thyroid cancer: a phase III, randomized, placebo-controlled trial (ASTRA). J Clin Oncol. 2022;40(17):1870–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhu Z, Liu J, Ding Y, Shi D, Zheng F. Anlotinib in radioactive iodine-refractory differentiated thyroid cancer and the usefulness of SUVmax as an prognostic indicator. J CLIN ONCOL. 2022;40(16_suppl):e18077–e18077.

    Article  Google Scholar 

  115. Brose MS, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. The Lancet. 2014;384(9940):319–28.

    Article  CAS  Google Scholar 

  116. Lin Y, Qin S, Li Z, Yang H, Fu W, Li S, Chen W, Gao Z, Miao W, Xu H, Zhang Q, Zhao X, Bao J, Li L, Ren Y, Lin C, Jing S, Ma Q, Liang J, Chen G, Zhang H, Zhang Y, Zhou X, Sang Y, Hou Z. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine-refractory differentiated thyroid cancer: the REALITY randomized clinical trial. JAMA Oncol. 2022;8(2):242–50.

    Article  PubMed  Google Scholar 

  117. Lin YS, et al. Donafenib in progressive locally advanced or metastatic radioactive iodine-refractory differentiated thyroid cancer: results of a randomized, multicenter phase II trial. Thyroid. 2021;31(4):607–15.

    Article  CAS  PubMed  Google Scholar 

  118. Schlumberger M, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30.

    Article  PubMed  Google Scholar 

  119. Tahara M, Takami H, Ito Y, Okamoto T, Sugitani I, Sugino K, Takahashi S, Takeyama H, Tsutsui H, Hara H, Mitsuma A, Yamashita H, Ohashi Y, Imai T. Planned drug holiday in a cohort study exploring the effect of lenvatinib on differentiated thyroid cancer. J Clin Oncol. 2021;39(15):6070–6070.

    Article  Google Scholar 

  120. Brose MS, Robinson B, Bermingham C, Puvvada S, Borgman AE, Krzyzanowska MK, Capdevila J, Sherman SI. A phase 3 (COSMIC-311), randomized, double-blind, placebo-controlled study of cabozantinib in patients with radioiodine (RAI)-refractory differentiated thyroid cancer (DTC) who have progressed after prior VEGFR-targeted therapy. J Clin Oncol. 2019;37(15):TPS6097–TPS6097.

    Article  Google Scholar 

  121. Capdevila J, Trigo JM, Aller J, Manzano JL, Adrián SG, Llopis CZ, Reig Ò, Bohn U, Cajal TRY, Duran-Poveda M, Astorga BG, López-Alfonso A, Martínez JM, Porras I, Reina JJ, Palacios N, Grande E, Cillán E, Matos I, Grau JJ. Axitinib treatment in advanced RAI-resistant differentiated thyroid cancer (DTC) and refractory medullary thyroid cancer (MTC). Eur J Endocrinol. 2017;177(4):309–17.

    Article  CAS  PubMed  Google Scholar 

  122. Cohen EE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 2008;26(29):4708–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brose MS, et al. Vemurafenib in patients with BRAFV600E-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(9):1272–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bible KC, et al. An international phase 2 study of pazopanib in progressive and metastatic thyroglobulin antibody negative radioactive iodine refractory differentiated thyroid cancer. Thyroid. 2020;30(9):1254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wong SK, et al. Prolonged response to regorafenib in a patient with iodine refractory thyroid cancer. Case Rep Oncol. 2019;12(3):791–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang Z, et al. Targeting EZH2 as a novel therapeutic strategy for sorafenib-resistant thyroid carcinoma. J Cell Mol Med. 2019;23(7):4770–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang S, Zhang X, Zhang X, Liu K, Ma T, Geng C, Niu Y, He X. Abstract 1199: mosaic KRAS G12S mutation associates with poor outcome in papillary thyroid carcinoma: a case report. Cancer Res. 2021;81(13):1199–1199.

    Article  Google Scholar 

  128. Hu L, et al. Pharmacological inhibition of Ref-1 enhances the therapeutic sensitivity of papillary thyroid carcinoma to vemurafenib. Cell Death Dis. 2022;13(2):124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sa R, Liang R, Qiu X, He Z, Liu Z, Chen L. IGF2BP2-dependent activation of ERBB2 signaling contributes to acquired resistance to tyrosine kinase inhibitor in differentiation therapy of radioiodine-refractory papillary thyroid cancer. Cancer Lett. 2022;527:10–23.

    Article  CAS  PubMed  Google Scholar 

  130. Wei W-J, et al. Obatoclax and LY3009120 efficiently overcome vemurafenib resistance in differentiated thyroid cancer. Theranostics. 2017;7(4):987–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Curry WT, Lim M. Immunomodulation: checkpoint blockade etc. Neuro Oncol. 2015;17:vii26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. French JD. Immunotherapy for advanced thyroid cancers—rationale, current advances and future strategies. Nat Rev Endocrinol. 2020;16(11):629–41.

    Article  PubMed  Google Scholar 

  133. Zhang P, et al. Targeting myeloid derived suppressor cells reverts immune suppression and sensitizes BRAF-mutant papillary thyroid cancer to MAPK inhibitors. Nat Commun. 2022;13(1):1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gunda V, et al. Anti-PD-1/PD-L1 therapy augments lenvatinib’s efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer. Int J Cancer. 2019;144(9):2266–78.

    Article  CAS  PubMed  Google Scholar 

  135. Tchekmedyian V, Dunn L, Sherman E, Baxi SS, Grewal RK, Larson SM, Pentlow KS, Haque S, Tuttle RM, Sabra MM, Fish S, Boucai L, Walters J, Ghossein RA, Seshan VE, Knauf JA, Pfister DG, Fagin JA, Ho AL. Enhancing radioiodine incorporation in BRAF-mutant, radioiodine-refractory thyroid cancers with vemurafenib and the anti-ErbB3 monoclonal antibody CDX-3379: results of a pilot clinical trial. Thyroid. 2022;32(3):273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dummer R, Queirolo P, Abajo Guijarro AM, Hu Y, Wang D, de Azevedo SJ, Robert C, Ascierto PA, Chiarion-Sileni V, Pronzato P, Spagnolo F, Mujika Eizmendi K, Liszkay G, de la Cruz ML, Tawbi H. Atezolizumab, vemurafenib, and cobimetinib in patients with melanoma with CNS metastases (TRICOTEL): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2022;23(9):1145–55.

    Article  CAS  PubMed  Google Scholar 

  137. Li J, Zhang X, Mu Z, Sun D, Sun Y, Lin Y. Response to apatinib and camrelizumab combined treatment in a radioiodine refractory differentiated thyroid cancer patient resistant to prior anti-angiogenic therapy: a case report and literature review. Front Immunol. 2022;13:943916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Haugen B, French J, Worden FP, Konda B, Sherman EJ, Dadu R, Gianoukakis AG, Wolfe EG, Foster NR, Bowles DW, Wirth LJ. Lenvatinib plus pembrolizumab combination therapy in patients with radioiodine-refractory (RAIR), progressive differentiated thyroid cancer (DTC): results of a multicenter phase II international thyroid oncology group trial. J Clin Oncol. 2020;38(15_suppl):6512–6512.

    Article  Google Scholar 

  139. Curigliano G, Mueller V, Borges V, Hamilton E, Hurvitz S, Loi S, Murthy R, Okines A, Paplomata E, Cameron D, Carey LA, Gelmon K, Hortobagyi GN, Krop I, Loibl S, Pegram M, Slamon D, Ramos J, Feng W, Winer E. Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2+ metastatic breast cancer with and without brain metastases (HER2CLIMB): final overall survival analysis. Ann Oncol. 2022;33(3):321–9.

    Article  CAS  PubMed  Google Scholar 

  140. Dummer R, Flaherty KT, Robert C, Arance A, de Groot JWB, Garbe C, Gogas HJ, Gutzmer R, Krajsová I, Liszkay G, Loquai C, Mandalà M, Schadendorf D, Yamazaki N, di Pietro A, Cantey-Kiser J, Edwards M, Ascierto PA. COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF V600-mutant melanoma. J Clin Oncol. 2022;40(36):4178–88. https://doi.org/10.1200/JCO.21.02659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Busaidy NL, Konda B, Wei L, Wirth LJ, Devine C, Daniels GA, DeSouza JA, Poi M, Seligson ND, Cabanillas ME, Sipos JA, Ringel MD, Eisfeld AK, Timmers C, Shah MH. Dabrafenib versus Dabrafenib + Trametinib in BRAF-mutated radioactive iodine refractory differentiated thyroid cancer: results of a randomized, phase 2, open-label multicenter trial. Thyroid. 2022;32(10):1184–92.

    CAS  PubMed  Google Scholar 

  142. Sherman EJ, Foster NR, Su YB, Shergill A, Ho AL, Konda B, Ghossein RA, Ganly I, Schwartz GK. Randomized phase II study of sorafenib with or without everolimus in patients with radioactive iodine refractory Hürthle cell thyroid cancer (HCC) (Alliance A091302/ITOG 1706). J Clin Oncol. 2021;39(15):6076–6076.

    Article  Google Scholar 

  143. Cheng L, Jin Y, Liu M, Ruan M, Chen L. HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E. Oncotarget. 2017;8(12):19843–54.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Bauman JE, et al. A multicenter randomized phase II study of single agent efficacy and optimal combination sequence of everolimus and pasireotide LAR in advanced thyroid cancer. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14112639.

    Article  PubMed  Google Scholar 

  145. Yi H, et al. Inhibition of autophagy enhances the targeted therapeutic effect of sorafenib in thyroid cancer. Oncol Rep. 2018;39(2):711–20.

    CAS  PubMed  Google Scholar 

  146. Meng X, et al. Apatinib inhibits cell proliferation and induces autophagy in human papillary thyroid carcinoma via the PI3K/Akt/mTOR signaling pathway. Front Oncol. 2020;10:217.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Grasso S, et al. Autophagy regulates Selumetinib (AZD6244) induced-apoptosis in colorectal cancer cells. Eur J Med Chem. 2016;122:611–8.

    Article  CAS  PubMed  Google Scholar 

  148. Mehnert JM, et al. BAMM (BRAF autophagy and MEK inhibition in melanoma): a phase I/II trial of Dabrafenib, Trametinib, and Hydroxychloroquine in advanced BRAFV600-mutant melanoma. Clin Cancer Res. 2022;28(6):1098–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mehdi M, Thalji SZ, Shreenivas AV, Chakrabarti S, Thomas JP, Christians KK, Evans DB, Hall WA, Erickson B, Thapa B, Ahmed G, Yazdanpanah O, Kurzrock R, Aldakkak M, Holden MB, George B, Tsai S, Oxencis C, McFall T, Kamgar M. MEK-inhibitor (inh) and hydroxychloroquine (HCQ) in KRAS-mutated advanced pancreatic ductal adenocarcinoma (PDAC). J CLIN ONCOL. 2022;40(16_suppl):e16260–e16260.

    Article  Google Scholar 

  150. Chen P, et al. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. J Exp Clin Cancer Res. 2019;38(1):254.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zheng Y, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol. 2021;14(1):16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fu H, et al. MAPK inhibitors enhance HDAC inhibitor-induced redifferentiation in papillary thyroid cancer cells harboring BRAF (V600E): an in vitro study. Mol Ther Oncolytics. 2019;12:235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cheng X, et al. Targeting autophagy enhances apatinib-induced apoptosis via endoplasmic reticulum stress for human colorectal cancer. Cancer Lett. 2018;431:105–14.

    Article  CAS  PubMed  Google Scholar 

  154. Xie C, et al. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. J Exp Clin Cancer Res. 2021;40(1):266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Surana R, JackLee J, Smaglo BG, Zhao D, Lee MS, Wolff RA, Overman MJ, Willis J, Der CJ, Pant S. Phase I study ofhydroxychloroquine plus binimetinib in patients with metastatic pancreatic cancer (the HOPE trial). J Clin Oncol. 2022;40(4_suppl):TPS634–TPS634.

    Article  Google Scholar 

  156. Raufi A, Wong W, Lee SM, Manji GA. MEKiAUTO: a phase I/II open-label study of combination therapy with the MEK inhibitor cobimetinib, Immune-checkpoint blockade with atezolizumab, and the AUTOphagy inhibitor hydroxychloroquine in KRAS-mutated advanced malignancies. J Clin Oncol. 2021;39(3_suppl):TPS450–TPS450.

    Article  Google Scholar 

  157. Raufi AG, Parker C, Zhou L, Prabhu VV, Allen J, El-Deiry WS. Abstract 1006: Combination therapy with MEK inhibitors and a novel anti-neoplastic drug, imipridone ONC212, demonstrates synergy in pancreatic ductal adenocarcinoma cell lines. Cancer Res. 2021;81(13_Supplement):1006–1006.

    Article  Google Scholar 

  158. Zhou H, et al. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater. 2023;23:409–37.

    Article  CAS  PubMed  Google Scholar 

  159. Jeon YH, et al. Human sodium/iodide symporter-mediated radioiodine gene therapy enhances the killing activities of CTLs in a mouse tumor model. Mol Cancer Ther. 2010;9(1):126–33.

    Article  CAS  PubMed  Google Scholar 

  160. Kim YH, et al. Codon-optimized human sodium iodide symporter (opt-hNIS) as a sensitive reporter and efficient therapeutic gene. Theranostics. 2015;5(1):86–96.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics. 2021;21:98–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Concilio SC, et al. Improved noninvasive in vivo tracking of AAV-9 gene therapy using the perchlorate-resistant sodium iodide symporter from Minke whale. Mol Ther. 2021;29(1):236–43.

    Article  CAS  PubMed  Google Scholar 

  163. Nikitski AV, et al. Mouse model of thyroid cancer progression and dedifferentiation driven by STRN-ALK expression and Loss of p53: evidence for the existence of two types of poorly differentiated carcinoma. Thyroid. 2019;29(10):1425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nikitski AV, Condello V, Divakaran SS, Nikiforov YE. Inhibition of ALK-signaling overcomes STRN-ALK-induced downregulation of the sodium iodine symporter and restores radioiodine uptake in thyroid cells. Thyroid. 2023;33(4):464–73. https://doi.org/10.1089/thy.2022.0533.

    Article  CAS  PubMed  Google Scholar 

  165. Watabe T, et al. Enhancement of (211)At uptake via the sodium iodide symporter by the addition of ascorbic acid in targeted alpha-therapy of thyroid cancer. J Nucl Med. 2019;60(9):1301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Watabe T, et al. Comparison of the therapeutic effects of [(211)At]NaAt and [(131)I]NaI in an NIS-expressing thyroid cancer mouse model. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23169434.

  167. Watabe T. Investigator-initiated clinical trial of 211At-NaAt against refractory thyroid cancer. Gan To Kagaku Ryoho. 2022;49(8):829–34.

    PubMed  Google Scholar 

  168. Strickaert A, Corbet C, Spinette S-A, Craciun L, Dom G, Andry G, Larsimont D, Wattiez R, Dumont JE, Feron O, Maenhaut C. Reprogramming of energy metabolism: increased expression and roles of pyruvate carboxylase in papillary thyroid cancer. Thyroid 2019;29(6):845–57. https://doi.org/10.1089/thy.2018.0435.

    Article  CAS  PubMed  Google Scholar 

  169. Liu Y, et al. Pyruvate carboxylase promotes malignant transformation of papillary thyroid carcinoma and reduces iodine uptake. Cell Death Discov. 2022;8(1):423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liu WL, et al. PRDM16 inhibits cell proliferation and migration via epithelial-to-mesenchymal transition by directly targeting pyruvate carboxylase in papillary thyroid cancer. Front Cell Dev Biol. 2021;9: 723777.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Goncalves CF, et al. Flavonoid rutin increases thyroid iodide uptake in rats. PLoS ONE. 2013;8(9): e73908.

    Article  CAS  PubMed  Google Scholar 

  172. Goncalves CFL, et al. Rutin scavenges reactive oxygen species, inactivates 5’-adenosine monophosphate-activated protein kinase, and increases sodium-iodide symporter expression in thyroid PCCL3 cells. Thyroid. 2018;28(2):265–75.

    Article  CAS  PubMed  Google Scholar 

  173. Shang H, et al. Nevirapine increases sodium/iodide symporter-mediated radioiodide uptake by activation of TSHR/cAMP/CREB/PAX8 signaling pathway in dedifferentiated thyroid cancer. Front Oncol. 2020;10:404.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Singh TD, et al. An inverse agonist of estrogen-related receptor gamma, GSK5182, enhances Na(+)/I(-) symporter function in radioiodine-refractory papillary thyroid cancer cells. Cells. 2023;12(3). https://doi.org/10.3390/cells12030470.

    Article  CAS  Google Scholar 

  175. Wang Y, et al. Reductive damage induced autophagy inhibition for tumor therapy. Nano Res. 2022;16(4):5226–36. https://doi.org/10.1007/s12274-022-5139-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Suma PR, et al. Vanadium pentoxide nanoparticle mediated perturbations in cellular redox balance and the paradigm of autophagy to apoptosis. Free Radic Biol Med. 2020;161:198–211.

    Article  CAS  PubMed  Google Scholar 

  177. Wang X, et al. Boosting nutrient starvation-dominated cancer therapy through curcumin-augmented mitochondrial Ca(2+) overload and obatoclax-mediated autophagy inhibition as supported by a novel nano-modulator GO-Alg@CaP/CO. J Nanobiotechnol. 2022;20(1):225.

    Article  Google Scholar 

  178. Schröder-van der Elst JP, van der Heide D, Romijn JA, Smit JW. Differential effects of natural flavonoids on growth and iodide content in a human Na1/I2 symporter-transfected follicular thyroid carcinoma cell line. Eur J Endocrinol. 2004;150:557–64.

    Article  PubMed  Google Scholar 

  179. Manohar PM, et al. Prognostic value of FDG-PET/CT metabolic parameters in metastatic radioiodine-refractory differentiated thyroid cancer. Clin Nucl Med. 2018;43(9):641–7.

    Article  PubMed  PubMed Central  Google Scholar 

  180. de Vries LH, et al. (68)Ga-PSMA PET/CT in radioactive iodine-refractory differentiated thyroid cancer and first treatment results with (177)Lu-PSMA-617. EJNMMI Res. 2020;10(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank AJE for the linguistic editing and proofreading of the manuscript.

Funding

This work was supported by the National Natural Science Foundation, Regional Science Foundation Project 81960322, 82160343; Joint Program of Applied Basic Research of Yunnan Provincial Department of Science and Technology—Kunming Medical University. NO. 202301AY070001-106; “Famous Doctor” Special Project of Ten Thousand People Plan of Yunnan Province (No. YNWR-MY-2020-095).

Author information

Authors and Affiliations

Authors

Contributions

Conception prepare: LZ, CL, ZL, MZ. Formal analysis: CL and LZ. Original draft preparation and visualization: LZ, ZL, MZ, HZ, YB, YL. Manuscript writing: LZ, CL, ZL, MZ, HZ, YB, YL. Supervision and review: JL, LL, PL. Administrative support and project administration: ZD, CL and JL. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zhiyong Deng.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This article is a review, and what we do is to summarize the data and materials of published articles and put forward our opinions. This work involves both human subjects and specimens collected from patients, and does not involve any animal experiments.

Informed consent

This paper is a review. What we have done is to summarize the data of published articles and put forward our opinions, which does not involve human study participants and their informed consent. The chart content of this paper is a summary of published articles, which does not involve the privacy and informed consent of human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, Z., Zhang, M. et al. Advances in the molecular mechanism and targeted therapy of radioactive-iodine refractory differentiated thyroid cancer. Med Oncol 40, 258 (2023). https://doi.org/10.1007/s12032-023-02098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02098-3

Keywords

Navigation