Skip to main content

Advertisement

Log in

NK cells direct the perspective approaches to cancer immunotherapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells are innate immune cells with cytotoxic potentials to kill cancerous cells in several mechanisms, which could be implied for cancer therapy. While potent, their antitumor activities specially for solid tumors impaired by inadequate tumor infiltration, suppressive tumor microenvironment, cancer-associated stroma cells, and tumor-supportive immune cells. Therefore, manipulating or reprogramming these barriers by prospective strategies might improve current immunotherapies in the clinic or introduce novel NK-based immunotherapies. NK-based immunotherapy could be developed in monotherapy or in combination with other therapeutic regimens such as oncolytic virus therapy and immune checkpoint blockade, as presented in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ACT:

Adoptive cell therapy

ADCC:

Antibody-dependent cellular cytotoxicity

CAR:

Chimeric antigen receptor

CRS:

Cytokine-release syndrome

CSCs:

Cancer stem cells

ICB:

Immune checkpoint blockade

iCARs:

Inhibitory CARs

iPSCs:

Induced pluripotent stem cells

GvHD:

Graft-versus-host disease

PBMC:

Peripheral blood mononuclear cell

MDSCs:

Myeloid-derived suppressor cells

ROS:

Reactive oxygen species

TAAs:

Tumor-associated antigens

TAMs:

Tumor-associated macrophages

TILs:

Tumor-infiltrating lymphocytes

TME:

Tumor microenvironment

References

  1. Achmad H, Ibrahim YS, Al-Taee MM, Gabr GA, Riaz MW, Alshahrani SH, et al. Nanovaccines in cancer immunotherapy: focusing on dendritic cell targeting. Int Immunopharmacol. 2022;113:109434.

    CAS  PubMed  Google Scholar 

  2. Esfahani K, Roudaia L, Buhlaiga N, Del Rincon S, Papneja N, Miller W. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol. 2020;27(s2):87–97.

    Google Scholar 

  3. DeW E. Driving T-cell immunotherapy to solid tumors. Nat Biotechnol. 2018;36(3):215–9.

    Google Scholar 

  4. Dianat-Moghadam H, Mahari A, Salahlou R, Khalili M, Azizi M, Sadeghzadeh H. Immune evader cancer stem cells direct the perspective approaches to cancer immunotherapy. Stem Cell Res Ther. 2022;13(1):1–12.

    Google Scholar 

  5. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discovery. 2015;14(8):561–84.

    CAS  PubMed  Google Scholar 

  6. Sihag S, Ku GY, Tan KS, Nussenzweig S, Wu A, Janjigian YY, et al. Safety and feasibility of esophagectomy following combined immunotherapy and chemoradiotherapy for esophageal cancer. J Thorac Cardiovasc Surg. 2021;161(3):836-43.e1.

    PubMed  Google Scholar 

  7. D’Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis. 2018;9(3):282.

    PubMed  PubMed Central  Google Scholar 

  8. Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ, Zanichelli A, et al. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol Cancer. 2022;21(1):64.

    PubMed  PubMed Central  Google Scholar 

  9. Forget M-A, Haymaker C, Hess KR, Meng YJ, Creasy C, Karpinets T, et al. Prospective analysis of adoptive TIL therapy in patients with metastatic melanoma: response, impact of anti-CTLA4, and biomarkers to predict clinical outcomeimpact of CTLA4 checkpoint blockade on TIL ACT. Clin Cancer Res. 2018;24(18):4416–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahmoudi R, Dianat-Moghadam H, Poorebrahim M, Siapoush S, Poortahmasebi V, Salahlou R, et al. Recombinant immunotoxins development for HER2-based targeted cancer therapies. Cancer Cell Int. 2021;21(1):1–17.

    Google Scholar 

  11. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–48.

    CAS  PubMed  Google Scholar 

  12. Singh H, Huls H, Kebriaei P, Cooper LJ. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD 19. Immunol Rev. 2014;257(1):181–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dianat-Moghadam H, Mahari A, Heidarifard M, Parnianfard N, Pourmousavi-Kh L, Rahbarghazi R, et al. NK cells-directed therapies target circulating tumor cells and metastasis. Cancer Lett. 2021;497:41–53.

    CAS  PubMed  Google Scholar 

  14. Raftery MJ, Franzén AS, Pecher G. CAR NK cells: the future is now. Annu Rev Cancer Biol. 2023. https://doi.org/10.1146/annurev-cancerbio-061521-082320.

    Article  Google Scholar 

  15. Long EO. Tumor cell recognition by natural killer cells. Semin Cancer Biol. 2002. https://doi.org/10.1006/scbi.2001.0398.

    Article  PubMed  Google Scholar 

  16. Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, et al. CAR-NK cell in cancer immunotherapy. Promis Front Cancer Sci. 2021;112(9):3427–36.

    CAS  Google Scholar 

  17. Dianat-Moghadam H, Heidarifard M, Mahari A, Shahgolzari M, Keshavarz M, Nouri M, et al. TRAIL in oncology: From recombinant TRAIL to nano-and self-targeted TRAIL-based therapies. Pharmacol Res. 2020;155:104716.

    CAS  PubMed  Google Scholar 

  18. Tomala J, Chmelova H, Mrkvan T, Rihova B, Kovar M. In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as novel approach of cancer immunotherapy. J Immunol. 2009;183(8):4904–12.

    CAS  PubMed  Google Scholar 

  19. Christodoulou I, Ho WJ, Marple A, Ravich JW, Tam A, Rahnama R, et al. Engineering CAR-NK cells to secrete IL-15 sustains their anti-AML functionality but is associated with systemic toxicities. J Immunother Cancer. 2021;9(12):e003894.

    PubMed  PubMed Central  Google Scholar 

  20. Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, et al. Voluntary running suppresses tumor growth through epinephrine-and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 2016;23(3):554–62.

    CAS  PubMed  Google Scholar 

  21. Triplett BM, Horwitz EM, Iyengar R, Turner V, Holladay MS, Gan K, et al. Effects of activating NK cell receptor expression and NK cell reconstitution on the outcomes of unrelated donor hematopoietic cell transplantation for hematologic malignancies. Leukemia. 2009;23(7):1278–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pelosi A, Besi F, Tumino N, Merli P, Quatrini L, Li Pira G, et al. NK cells and PMN-MDSCs in the graft from G-CSF mobilized haploidentical donors display distinct gene expression profiles from those of the non-mobilized counterpart. Front Immunol. 2021;12:657329.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lucca LE, Dominguez-Villar M. Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol. 2020;20(11):680–93.

    CAS  PubMed  Google Scholar 

  24. Wang Z, Guo L, Song Y, Zhang Y, Lin D, Hu B, et al. Augmented anti-tumor activity of NK-92 cells expressing chimeric receptors of TGF-βR II and NKG2D. Cancer Immunol Immunother. 2017;66:537–48.

    CAS  PubMed  Google Scholar 

  25. Sadeghi-Soureh S, Jafari R, Gholikhani-Darbroud R, Pilehvar-Soltanahmadi Y. Potential of Chrysin-loaded PCL/gelatin nanofibers for modulation of macrophage functional polarity towards anti-inflammatory/pro-regenerative phenotype. J Drug Deliv Sci Technol. 2020;58:101802.

    CAS  Google Scholar 

  26. Zamani R, Pilehvar-Soltanahmadi Y, Alizadeh E, Zarghami N. Macrophage repolarization using emu oil-based electrospun nanofibers: possible application in regenerative medicine. Artificial Cells Nanomed Biotechnol. 2018;46(6):1258–65.

    CAS  Google Scholar 

  27. Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol. 2020;9:1512.

    PubMed  PubMed Central  Google Scholar 

  28. Firouzi-Amandi A, Dadashpour M, Nouri M, Zarghami N, Serati-Nouri H, Jafari-Gharabaghlou D, et al. Chrysin-nanoencapsulated PLGA-PEG for macrophage repolarization: Possible application in tissue regeneration. Biomed Pharmacother. 2018;105:773–80.

    CAS  PubMed  Google Scholar 

  29. Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17(12):887–904.

    CAS  PubMed  Google Scholar 

  30. Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 2022;19(6):402–21.

    PubMed  Google Scholar 

  31. Al-Haideri M, Tondok SB, Safa SH, Rostami S, Jalil AT, Al-Gazally ME, et al. CAR-T cell combination therapy: the next revolution in cancer treatment. Cancer Cell Int. 2022;22(1):1–26.

    Google Scholar 

  32. Jiménez-Cortegana C, Galassi C, Klapp V, Gabrilovich DI, Galluzzi L. Myeloid-derived suppressor cells and radiotherapy. Cancer Immunol Res. 2022;10(5):545–57.

    PubMed  Google Scholar 

  33. Gimeno R, Barquinero J. Myeloid-derived suppressor cells (MDSC): another player in the orchestra. Inmunología. 2011;30(2):45–53.

    Google Scholar 

  34. Greene S, Robbins Y, Mydlarz WK, Huynh AP, Schmitt NC, Friedman J, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer modelsmyeloid cell inhibition enhances NK cellular immunotherapy. Clin Cancer Res. 2020;26(6):1420–31.

    CAS  PubMed  Google Scholar 

  35. Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist A. Inhibition of tumor-derived prostaglandin-E2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activityrescue of NK cells by blocking the induction of MDSCs. Clin Cancer Res. 2014;20(15):4096–106.

    CAS  PubMed  Google Scholar 

  36. Stiff A, Trikha P, Mundy-Bosse B, McMichael E, Mace TA, Benner B, et al. Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell functionMDSC inhibit antibody therapy via nitric oxide production. Clin Cancer Res. 2018;24(8):1891–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Z, Chen M, Zhao R, Huang Y, Liu F, Li B, et al. CAF-induced placental growth factor facilitates neoangiogenesis in hepatocellular carcinoma. Acta Biochim Biophys Sin. 2020;52(1):18–25.

    CAS  PubMed  Google Scholar 

  38. Gok Yavuz B, Gunaydin G, Gedik ME, Kosemehmetoglu K, Karakoc D, Ozgur F, et al. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci Rep. 2019;9(1):3172.

    PubMed  PubMed Central  Google Scholar 

  39. Li T, Yang Y, Hua X, Wang G, Liu W, Jia C, et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett. 2012;318(2):154–61.

    CAS  PubMed  Google Scholar 

  40. Yang N, Lode K, Berzaghi R, Islam A, Martinez-Zubiaurre I, Hellevik T. Irradiated tumor fibroblasts avoid immune recognition and retain immunosuppressive functions over natural killer cells. Front Immunol. 2021;11:602530.

    PubMed  PubMed Central  Google Scholar 

  41. Wang L, Chen Z, Liu G, Pan Y. Functional crosstalk and regulation of natural killer cells in tumor microenvironment: Significance and potential therapeutic strategies. Genes Dis. 2022;10:990–1004.

    Google Scholar 

  42. Rezaeifard S, Talei A, Shariat M, Erfani N. Tumor infiltrating NK cell (TINK) subsets and functional molecules in patients with breast cancer. Mol Immunol. 2021;136:161–7.

    CAS  PubMed  Google Scholar 

  43. Xanthou G, Duchesnes CE, Williams TJ, Pease JE. CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. Eur J Immunol. 2003;33(8):2241–50.

    CAS  PubMed  Google Scholar 

  44. Solomon I, Amann M, Goubier A, Arce Vargas F, Zervas D, Qing C, et al. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nature cancer. 2020;1(12):1153–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Parodi M, Raggi F, Cangelosi D, Manzini C, Balsamo M, Blengio F, et al. Hypoxia modifies the transcriptome of human NK cells, modulates their immunoregulatory profile, and influences NK cell subset migration. Front Immunol. 2018;9:2358.

    PubMed  PubMed Central  Google Scholar 

  46. Wang B, Zhao Q, Zhang Y, Liu Z, Zheng Z, Liu S, et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J Exp Clin Cancer Res. 2021;40(1):1–16.

    Google Scholar 

  47. Ehlers FA, Beelen NA, van Gelder M, Evers TM, Smidt ML, Kooreman LF, et al. Adcc-inducing antibody trastuzumab and selection of kir-hla ligand mismatched donors enhance the nk cell anti-breast cancer response. Cancers. 2021;13(13):3232.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng X, Qian Y, Fu B, Jiao D, Jiang Y, Chen P, et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat Immunol. 2019;20(12):1656–67.

    CAS  PubMed  Google Scholar 

  49. Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK cell metabolism and tumor microenvironment. Front Immunol. 2019;10:2278.

    PubMed  PubMed Central  Google Scholar 

  50. Lee JH, Elly C, Park Y, Liu Y-C. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1α to maintain regulatory T cell stability and suppressive capacity. Immunity. 2015;42(6):1062–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tripathi C, Tewari BN, Kanchan RK, Baghel KS, Nautiyal N, Shrivastava R, et al. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget. 2014;5(14):5350.

    PubMed  PubMed Central  Google Scholar 

  52. Chiu DKC, Xu IMJ, Lai RKH, Tse APW, Wei LL, Koh HY, et al. Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology. 2016;64(3):797–813.

    CAS  PubMed  Google Scholar 

  53. Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu Z-G. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 2013;23(7):898–914.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Park A, Lee Y, Kim MS, Kang YJ, Park Y-J, Jung H, et al. Prostaglandin E2 secreted by thyroid cancer cells contributes to immune escape through the suppression of natural killer (NK) cell cytotoxicity and NK cell differentiation. Front Immunol. 2018;9:1859.

    PubMed  PubMed Central  Google Scholar 

  55. Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P. PGE2-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer EnvironmentPGE2 controls CXCR4-driven accumulation of MDSCs. Can Res. 2011;71(24):7463–70.

    CAS  Google Scholar 

  56. Yang R, Elsaadi S, Misund K, Abdollahi P, Vandsemb EN, Moen SH, et al. Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade. J Immunother Cancer. 2020;8(1):e000610.

    PubMed  PubMed Central  Google Scholar 

  57. Tadokoro H, Hirayama A, Kudo R, Hasebe M, Yoshioka Y, Matsuzaki J, et al. Adenosine leakage from perforin-burst extracellular vesicles inhibits perforin secretion by cytotoxic T-lymphocytes. PLoS ONE. 2020;15(4):e0231430.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lokshin A, Raskovalova T, Huang X, Zacharia LC, Jackson EK, Gorelik E. Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells. Can Res. 2006;66(15):7758–65.

    CAS  Google Scholar 

  59. Young A, Ngiow SF, Gao Y, Patch A-M, Barkauskas DS, Messaoudene M, et al. A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironmentadenosine impairs proliferation of terminal NK cells. Can Res. 2018;78(4):1003–16.

    CAS  Google Scholar 

  60. Ray A, Das D, Song Y, Richardson P, Munshi N, Chauhan D, et al. Targeting PD1–PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia. 2015;29(6):1441–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bao R, Hou J, Li Y, Bian J, Deng X, Zhu X, et al. Adenosine promotes Foxp3 expression in Treg cells in sepsis model by activating JNK/AP-1 pathway. Am J Transl Res. 2016;8(5):2284.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Montalbán del Barrio I, Penski C, Schlahsa L, Stein RG, Diessner J, Wöckel A, et al. Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages–a self-amplifying, CD39-and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer. 2016;4:1–16.

    Google Scholar 

  63. Sutlu T, Nyström S, Gilljam M, Stellan B, Applequist SE, Alici E. Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: implications for gene therapy. Hum Gene Ther. 2012;23(10):1090–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Maki G, Klingemann H-G, Martinson JA, Tam YK. Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J Hematother Stem Cell Res. 2001;10(3):369–83.

    CAS  PubMed  Google Scholar 

  65. Zerbini A, Pilli M, Laccabue D, Pelosi G, Molinari A, Negri E, et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology. 2010;138(5):1931-42.e2.

    CAS  PubMed  Google Scholar 

  66. Shankar K, Capitini CM, Saha K. Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies. Stem Cell Res Ther. 2020;11(1):1–14.

    Google Scholar 

  67. Bi J, Huang C, Jin X, Zheng C, Huang Y, Zheng X, et al. TIPE2 deletion improves the therapeutic potential of adoptively transferred NK cells. J Immunother Cancer. 2023;11(2):e006002.

    PubMed  PubMed Central  Google Scholar 

  68. Suzuki N, Yamazaki S, Yamaguchi T, Okabe M, Masaki H, Takaki S, et al. Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther. 2013;21(7):1424–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wenes M, Jaccard A, Wyss T, Maldonado-Pérez N, Teoh ST, Lepez A, et al. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metab. 2022;34(5):731–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pomeroy EJ, Hunzeker JT, Kluesner MG, Lahr WS, Smeester BA, Crosby MR, et al. A genetically engineered primary human natural killer cell platform for cancer immunotherapy. Mol Ther. 2020;28(1):52–63.

    CAS  PubMed  Google Scholar 

  71. Clara JA, Levy ER, Reger R, Barisic S, Chen L, Cherkasova E, et al. High-affinity CD16 integration into a CRISPR/Cas9-edited CD38 locus augments CD38-directed antitumor activity of primary human natural killer cells. J Immunother Cancer. 2022;10(2):e003804.

    PubMed  PubMed Central  Google Scholar 

  72. Shahgolzari M, Dianat-Moghadam H, Fiering S. Multifunctional plant virus nanoparticles in the next generation of cancer immunotherapies. Semin in Cancer Biol. 2022;86:1076–85.

    CAS  Google Scholar 

  73. Eisinger S, Sarhan D, Boura VF, Ibarlucea-Benitez I, Tyystjärvi S, Oliynyk G, et al. Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proc Natl Acad Sci. 2020;117(50):32005–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Goldenson B, Fierro M, Pouyanfard S, Kaufman DS. iPSC-derived natural killer cells and macrophages synergistically kill acute myeloid leukemia blasts. Blood. 2021;138:1692.

    Google Scholar 

  75. Heine A, Flores C, Gevensleben H, Diehl L, Heikenwalder M, Ringelhan M, et al. Targeting myeloid derived suppressor cells with all-trans retinoic acid is highly time-dependent in therapeutic tumor vaccination. Oncoimmunology. 2017;6(8):e1338995.

    PubMed  PubMed Central  Google Scholar 

  76. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ireland L, Luckett T, Schmid MC, Mielgo A. Blockade of stromal Gas6 alters cancer cell plasticity, activates NK cells, and inhibits pancreatic cancer metastasis. Front Immunol. 2020;11:297.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Costa D, Venè R, Benelli R, Romairone E, Scabini S, Catellani S, et al. Targeting the epidermal growth factor receptor can counteract the inhibition of natural killer cell function exerted by colorectal tumor-associated fibroblasts. Front Immunol. 2018;9:1150.

    PubMed  PubMed Central  Google Scholar 

  79. Li J, Sharkey CC, Huang D, King MR. Nanobiotechnology for the therapeutic targeting of cancer cells in blood. Cell Mol Bioeng. 2015;8:137–50.

    PubMed  Google Scholar 

  80. Dianat-Moghadam H, Azizi M, Eslami-S Z, Cortés-Hernández LE, Heidarifard M, Nouri M, et al. The role of circulating tumor cells in the metastatic cascade: biology, technical challenges, and clinical relevance. Cancers. 2020;12(4):867.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Leung EY, Ennis DP, Kennedy PR, Hansell C, Dowson S, Farquharson M, et al. NK cells augment oncolytic adenovirus cytotoxicity in ovarian cancer. Mol Ther-Oncolytics. 2020;16:289–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Keshavarz M, Nejad ASM, Esghaei M, Bokharaei-Salim F, Dianat-Moghadam H, Keyvani H, et al. Oncolytic Newcastle disease virus reduces growth of cervical cancer cell by inducing apoptosis. Saudi J Biol Sci. 2020;27(1):47–52.

    CAS  PubMed  Google Scholar 

  83. Chen X, Han J, Chu J, Zhang L, Zhang J, Chen C, et al. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget. 2016;7(19):27764–77.

    PubMed  PubMed Central  Google Scholar 

  84. Rezaei R, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Ranjbar R, Bolandian M, et al. Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther. 2022;29(6):647–60.

    CAS  PubMed  Google Scholar 

  85. Keshavarz M, Ebrahimzadeh MS, Miri SM, Dianat-Moghadam H, Ghorbanhosseini SS, Mohebbi SR, et al. Oncolytic Newcastle disease virus delivered by Mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment. Virol J. 2020;17(1):1–13.

    Google Scholar 

  86. Keshavarz M, Miri SM, Behboudi E, Arjeini Y, Dianat-Moghadam H, Ghaemi A. Oncolytic virus delivery modulated immune responses toward cancer therapy: Challenges and perspectives. Int Immunopharmacol. 2022;108:108882.

    CAS  PubMed  Google Scholar 

  87. Li K, Zhao Y, Hu X, Jiao J, Wang W, Yao H. Advances in the clinical development of oncolytic viruses. Am J Transl Res. 2022;14(6):4192.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Idorn M, Hojman P. Exercise-dependent regulation of NK cells in cancer protection. Trends Mol Med. 2016;22(7):565–77.

    CAS  PubMed  Google Scholar 

  89. El Hafny-Rahbi B, Brodaczewska K, Collet G, Majewska A, Klimkiewicz K, Delalande A, et al. Tumour angiogenesis normalized by myo-inositol trispyrophosphate alleviates hypoxia in the microenvironment and promotes antitumor immune response. J Cell Mol Med. 2021;25(7):3284–99.

    PubMed  PubMed Central  Google Scholar 

  90. Murphy DA, Cheng H, Yang T, Yan X, Adjei IM. Reversing hypoxia with PLGA-encapsulated manganese dioxide nanoparticles improves natural killer cell response to tumor spheroids. Mol Pharm. 2021;18(8):2935–46.

    CAS  PubMed  Google Scholar 

  91. Teng R, Wang Y, Lv N, Zhang D, Williamson RA, Lei L, et al. Hypoxia impairs NK cell cytotoxicity through SHP-1-mediated attenuation of STAT3 and ERK signaling pathways. J Immunol Res. 2020;2020:1–14.

    Google Scholar 

  92. Aydin E, Johansson J, Nazir FH, Hellstrand K, Martner A. Role of NOX2-derived reactive oxygen species in NK cell–mediated control of murine melanoma metastasis. Cancer Immunol Res. 2017;5(9):804–11.

    CAS  PubMed  Google Scholar 

  93. Yang Y, Neo SY, Chen Z, Cui W, Chen Y, Guo M, et al. Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating NK cells. J Clin Investig. 2020;130(10):5508–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma X, Holt D, Kundu N, Reader J, Goloubeva O, Take Y, et al. A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE2-mediated immunosuppression and inhibits breast cancer metastasis. Oncoimmunology. 2013;2(1):e22647.

    PubMed  PubMed Central  Google Scholar 

  95. Wang J, Toregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, Bernal-Crespo V, et al. Multispecific targeting of glioblastoma with tumor microenvironment-responsive multifunctional engineered NK cells. Proc Natl Acad Sci. 2021;118(45):e2107507118.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chambers AM, Wang J, Lupo KB, Yu H, Atallah Lanman NM, Matosevic S. Adenosinergic signaling alters natural killer cell functional responses. Front Immunol. 2018;9:2533.

    PubMed  PubMed Central  Google Scholar 

  97. Rezvani K, Rouce R, Liu E, Shpall E. Engineering natural killer cells for cancer immunotherapy. Mol Ther. 2017;25(8):1769–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. El-Mayta R, Zhang Z, Hamilton AG, Mitchell MJ. Delivery technologies to engineer natural killer cells for cancer immunotherapy. Cancer Gene Ther. 2021;28(9):947–59.

    CAS  PubMed  Google Scholar 

  99. Wang Q-M, Tang PM-K, Lian G-Y, Li C, Li J, Huang X-R, et al. Enhanced cancer immunotherapy with Smad3-silenced NK-92 cells. Cancer Immunol Res. 2018;6(8):965–77.

    CAS  PubMed  Google Scholar 

  100. Xing D, Ramsay AG, Gribben JG, Decker WK, Burks JK, Munsell M, et al. Cord blood natural killer cells exhibit impaired lytic immunological synapse formation that is reversed with IL-2 exvivo expansion. J Immunother. 2010;33(7):684–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Woan KV, Kim H, Bjordahl R, Davis ZB, Gaidarova S, Goulding J, et al. Harnessing features of adaptive NK cells to generate iPSC-derived NK cells for enhanced immunotherapy. Cell Stem Cell. 2021;28(12):2062-75.e5.

    CAS  PubMed  Google Scholar 

  102. Goodridge JP, Mahmood S, Zhu H, Gaidarova S, Blum R, Bjordahl R, et al. FT596: translation of first-of-kind multi-antigen targeted off-the-shelf CAR-NK cell with engineered persistence for the treatment of B cell malignancies. Blood. 2019;134:301.

    Google Scholar 

  103. Gerew A, Sexton S, Wasko KM, Shearman MS, Zhang K, Chang K-H, et al. Deletion of CISH and TGFβR2 in iPSC-derived NK cells promotes high cytotoxicity and enhances in vivo tumor killing. Blood. 2021;138:2780.

    Google Scholar 

  104. Wang Z, McWilliams-Koeppen HP, Reza H, Ostberg JR, Chen W, Wang X, et al. 3D-organoid culture supports differentiation of human CAR+ iPSCs into highly functional CAR T cells. Cell Stem Cell. 2022;29(4):515-27.e8.

    PubMed  PubMed Central  Google Scholar 

  105. Huang R-S, Shih H-A, Lai M-C, Chang Y-J, Lin S. Enhanced NK-92 cytotoxicity by CRISPR genome engineering using Cas9 ribonucleoproteins. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.01008.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lupo KB, Moon J-I, Chambers AM, Matosevic S. Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum-and feeder-free conditions. Cytotherapy. 2021;23(10):939–52.

    CAS  PubMed  Google Scholar 

  107. Omear H. Novel SNPs of TNF-a and IL-6 that regulate serum level in obese patients. J Biomed Biochem 2023;2(1):7–20. https://doi.org/10.57238/jbb.2023.6398.1025

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ATJ: conceptualization, investigation, writing original draft, writing-review & editing, visualization, supervision, and project administration. MMH, RSZ, AAF, MAA, FAA-M, MMH, SJA, and AKJA-A: investigation, writing original draft, writing revised draft. All co-authors approved the final version of the manuscript.

Corresponding author

Correspondence to Abduladheem Turki Jalil.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalil, A.T., Abdulhadi, M.A., Al-Marzook, F.A. et al. NK cells direct the perspective approaches to cancer immunotherapy. Med Oncol 40, 206 (2023). https://doi.org/10.1007/s12032-023-02066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02066-x

Keywords

Navigation