Skip to main content

Advertisement

Log in

The past, present, and future of immunotherapy for endometrial adenocarcinoma

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Incidences of endometrial adenocarcinoma are increasing in the USA with poor prognosis for patients with advanced disease. The current treatment standard is surgery including total hysterectomy and bilateral oophorectomy with surgical staging and adjunct treatment, such as chemotherapy or radiation. However, these methods do not present as an effective treatment option for poorly differentiated advanced cancers. Advancements in immunotherapy now offer a new approach for various types of cancer and specifically show promise in the treatment of endometrial adenocarcinoma. This review summarizes immunotherapeutic treatment options relevant to endometrial adenocarcinoma, such as immune checkpoint blockades, bispecific T-cell engager antibodies, vaccinations, and adoptive cell transfer. This study could be helpful for clinicians to identify treatment options more suitable for women with late-stage endometrial adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crosbie EJ, Kitson SJ, McAlpine JN, Mukhopadhyay A, Powell ME, Singh N. Endometrial cancer. Lancet. 2022;399(10333):1412–28. https://doi.org/10.1016/S0140-6736(22)00323-3. (PMID: 35397864).

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics. CA Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763. (PMID: 36633525).

    Article  PubMed  Google Scholar 

  3. Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983;15(1):10–7. https://doi.org/10.1016/0090-8258(83)90111-7. (PMID: 6822361).

    Article  CAS  PubMed  Google Scholar 

  4. Feinberg J, Albright B, Black J, Lu L, Passarelli R, Gysler S, Whicker M, Altwerger G, Menderes G, Hui P, Santin AD, Azodi M, Silasi DA, Ratner ES, Litkouhi B, Schwartz PE. Ten-year comparison study of type 1 and 2 endometrial cancers: risk factors and outcomes. Gynecol Obstet Invest. 2019;84(3):290–7. https://doi.org/10.1159/000493132. (PMID: 30602164).

    Article  PubMed  Google Scholar 

  5. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, Levine DA. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. https://doi.org/10.1038/nature12113.

    Article  CAS  Google Scholar 

  6. Wang X-Y, Fisher PB, editors. Immunotherapy of cancer. 1st ed. Amsterdam: Elsevier Academic Press; 2019. Accessed from: https://www.elsevier.com/books/immunotherapy-of-cancer/wang/978-0-12-817022-9

  7. Demaria O, Cornen S, Daëron M, Morel Y, Medzhitov R, Vivier E. Harnessing innate immunity in cancer therapy. Nature. 2019;574(7776):45–56. https://doi.org/10.1038/s41586-019-1593-5.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–21. https://doi.org/10.1038/s41423-020-0488-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thomas D, Bello DM. Adjuvant immunotherapy for melanoma. J Surg Oncol. 2021;123(3):789–97. https://doi.org/10.1002/jso.26329. (PMID: 33595889).

    Article  CAS  PubMed  Google Scholar 

  10. Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 2022;40(6):586–97. https://doi.org/10.1200/JCO.21.01497.

    Article  CAS  PubMed  Google Scholar 

  11. Baxter D. Active and passive immunization for cancer. Hum Vaccin Immunother. 2014;10(7):2123–9. https://doi.org/10.4161/hv.29604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Di Tucci C, Capone C, Galati G, Iacobelli V, Schiavi MC, Di Donato V, Muzii L, Panici PB. Immunotherapy in endometrial cancer: new scenarios on the horizon. J Gynecol Oncol. 2019;3:e46. https://doi.org/10.3802/jgo.2019.30.e46.

    Article  CAS  Google Scholar 

  13. National Cancer Institute: Immune Checkpoint Inhibitors. Accessed from: https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors.

  14. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petitprez F, Meylan M, de Reyniès A, Sautès-Fridman C, Fridman WH. The tumor microenvironment in the response to immune checkpoint blockade therapies. Front Immunol. 2020;7(11):784. https://doi.org/10.3389/fimmu.2020.00784.

    Article  CAS  Google Scholar 

  16. Sadreddini S, Baradaran B, Aghebati-Maleki A, Sadreddini S, Shanehbandi D, Fotouhi A, Aghebati-Maleki L. Immune checkpoint blockade opens a new way to cancer immunotherapy. J Cell Physiol. 2019;234(6):8541–9. https://doi.org/10.1002/jcp.27816.

    Article  CAS  PubMed  Google Scholar 

  17. Son J, George GC, Nardo M, Krause KJ, Jazaeri AA, Biter AB, Hong DS. Adoptive cell therapy in gynecologic cancers: a systematic review and meta-analysis. Gynecol Oncol. 2022;165(3):664–70. https://doi.org/10.1016/j.ygyno.2022.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, Diaz LA Jr. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. https://doi.org/10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ryan NAJ, Glaire MA, Blake D, Cabrera-Dandy M, Evans DG, Crosbie EJ. The proportion of endometrial cancers associated with Lynch syndrome: a systematic review of the literature and meta-analysis. Genet Med. 2019;21(10):2167–80. https://doi.org/10.1038/s41436-019-0536-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao S, Chen L, Zang Y, Liu W, Liu S, Teng F, Xue F, Wang Y. Endometrial cancer in Lynch syndrome. Int J Cancer. 2022;150(1):7–17. https://doi.org/10.1002/ijc.33763.

    Article  CAS  PubMed  Google Scholar 

  21. O’Malley DM, Bariani GM, Cassier PA, Marabelle A, Hansen AR, De Jesus AA, Miller WH Jr, Safra T, Italiano A, Mileshkin L, Xu L, Jin F, Norwood K, Maio M. Pembrolizumab in patients with microsatellite instability-high advanced endometrial cancer: results from the KEYNOTE-158 study. J Clin Oncol. 2022;40(7):752–61. https://doi.org/10.1200/JCO.21.01874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 2019;25(13):3753–8. https://doi.org/10.1158/1078-0432.CCR-18-4070.

    Article  CAS  PubMed  Google Scholar 

  23. Oaknin A, Gilbert L, Tinker AV, Brown J, Mathews C, Press J, Sabatier R, O’Malley DM, Samouelian V, Boni V, Duska L, Ghamande S, Ghatage P, Kristeleit R, Leath C III, Guo W, Im E, Zildjian S, Han X, Duan T, Veneris J, Pothuri B. J Immunother Cancer. 2022;10(1):e003777. https://doi.org/10.1136/jitc-2021-003777.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Motzer RJ, Taylor MH, Evans TRJ, Okusaka T, Glen H, Lubiniecki GM, Dutcus C, Smith AD, Okpara CE, Hussein Z, Hayato S, Tamai T, Makker V. Lenvatinib dose, efficacy, and safety in the treatment of multiple malignancies. Expert Rev Anticancer Ther. 2022;22(4):383–400. https://doi.org/10.1080/14737140.2022.2039123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh V, Sheikh A, Abourehab MAS, Kesharwani P. Dostarlimab as a miracle drug: rising hope against cancer treatment. Biosensors (Basel). 2022;12(8):617. https://doi.org/10.3390/bios12080617.

    Article  CAS  PubMed  Google Scholar 

  26. Makker V, Taylor MH, Aghajanian C, Oaknin A, Mier J, Cohn AL, Romeo M, Bratos R, Brose MS, DiSimone C, Messing M, Stepan DE, Dutcus CE, Wu J, Schmidt EV, Orlowski R, Sachdev P, Shumaker R, Casado HA. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer. J Clin Oncol. 2020;38(26):2981–92. https://doi.org/10.1200/JCO.19.02627.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marth C, Tarnawski R, Tyulyandina A, Pignata S, Gilbert L, Kaen D, Rubio MJ, Frentzas S, Beiner M, Magallanes-Maciel M, Farrelly L, Choi CH, Berger R, Lee C, Vulsteke C, Hasegawa K, Braicu EI, Wu X, McKenzie J, Lee JJ, Makker V. Phase 3, randomized, open-label study of pembrolizumab plus lenvatinib versus chemotherapy for first-line treatment of advanced or recurrent endometrial cancer: ENGOT-en9/LEAP-001. Int J Gynecol Cancer. 2022;32(1):93–100. https://doi.org/10.1136/ijgc-2021-003017.

    Article  PubMed  Google Scholar 

  28. Wang Z, Cao YJ. Adoptive cell therapy targeting neoantigens: a frontier for cancer research. Front Immunol. 2020;5(11):176. https://doi.org/10.3389/fimmu.2020.00176.

    Article  Google Scholar 

  29. Ralli M, Botticelli A, Visconti IC, Angeletti D, Fiore M, Marchetti P, Lambiase A, de Vincentiis M, Greco A. Immunotherapy in the treatment of metastatic melanoma: current knowledge and future directions. J Immunol Res. 2020. https://doi.org/10.1155/2020/9235638.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cao W, Ma X, Fischer JV, Sun C, Kong B, Zhang Q. Immunotherapy in endometrial cancer: rationale, practice, and perspectives. Biomark Res. 2021;9(1):49. https://doi.org/10.1186/s40364-021-00301-z.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Santin AD, Hermonat PL, Ravaggi A, Bellone S, Cowan C, Coke C, Pecorelli S, Cannon MJ, Parham GP. Development and therapeutic effect of adoptively transferred T cells primed by tumor lysate-pulsed autologous dendritic cells in a patient with metastatic endometrial cancer. Gynecol Obstet Invest. 2000;49(3):194–203. https://doi.org/10.1159/000010246. (PMID: 10729762).

    Article  CAS  PubMed  Google Scholar 

  32. Bellone S, Black J, English DP, Schwab CL, Lopez S, Cocco E, Bonazzoli E, Predolini F, Ferrari F, Ratner E, Silasi DA, Azodi M, Schwartz PE, Santin AD. Solitomab, an EpCAM/CD3 bispecific antibody construct (BiTE), is highly active against primary uterine serous papillary carcinoma cell lines in vitro. Am J Obstet Gynecol. 2016;214(1):99.e1-8. https://doi.org/10.1016/j.ajog.2015.08.011.

    Article  CAS  PubMed  Google Scholar 

  33. Yang A, Jeang J, Cheng K, Cheng T, Yang B, Wu TC, Hung CF. Current state in the development of candidate therapeutic HPV vaccines. Expert Rev Vaccines. 2016;15(8):989–1007. https://doi.org/10.1586/14760584.2016.1157477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu W, Tang H, Li L, Wang X, Yu Z, Li J. Peptide-based therapeutic cancer vaccine: current trends in clinical application. Cell Prolif. 2021;54(5):e13025. https://doi.org/10.1111/cpr.13025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74. https://doi.org/10.1038/nri2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Angelico G, Santoro A, Straccia P, Inzani F, Cianfrini F, Spadola S, Arciuolo D, Valente M, D’Alessandris N, Mulè A, Zannoni GF. Diagnostic and prognostic role of WT1 immunohistochemical expression in uterine carcinoma: a systematic review and meta-analysis across all endometrial carcinoma histotypes. Diagnostics (Basel). 2020;10(9):637. https://doi.org/10.3390/diagnostics10090637.

    Article  CAS  PubMed  Google Scholar 

  37. Ohno S, Kyo S, Myojo S, Dohi S, Ishizaki J, Miyamoto K, Morita S, Sakamoto J, Enomoto T, Kimura T, Oka Y, Tsuboi A, Sugiyama H, Inoue M. Wilms’ tumor 1 (WT1) peptide immunotherapy for gynecological malignancy. Anticancer Res. 2009;29(11):4779–84 (PMID: 20032435).

    CAS  PubMed  Google Scholar 

  38. Coosemans A, Vanderstraeten A, Tuyaerts S, Verschuere T, Moerman P, Berneman ZN, Vergote I, Amant F, Van Gool SW. Wilms’ tumor gene 1 (WT1)–loaded dendritic cell immunotherapy in patients with uterine tumors: a phase I/II clinical trial. Anticancer Res. 2013;33(12):5495–500.

    CAS  PubMed  Google Scholar 

  39. de Moura IA, Silva AJD, de Macêdo LS, Invenção MDCV, de Sousa MMG, de Freitas AC. Enhancing the effect of nucleic acid vaccines in the treatment of HPV-related cancers: an overview of delivery systems. Pathogens. 2022;11(12):1444. https://doi.org/10.3390/pathogens11121444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jäger E, Karbach J, Gnjatic S, Neumann A, Bender A, Valmori D, Ayyoub M, Ritter E, Ritter G, Jäger D, Panicali D, Hoffman E, Pan L, Oettgen H, Old LJ, Knuth A. Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc Natl Acad Sci USA. 2006;103(39):14453–8. https://doi.org/10.1073/pnas.0606512103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaumaya PT, Foy KC, Garrett J, Rawale SV, Vicari D, Thurmond JM, Lamb T, Mani A, Kane Y, Balint CR, Chalupa D, Otterson GA, Shapiro CL, Fowler JM, Grever MR, Bekaii-Saab TS, Carson WE 3rd. Phase I active immunotherapy with combination of two chimeric, human epidermal growth factor receptor 2, B-cell epitopes fused to a promiscuous T-cell epitope in patients with metastatic and/or recurrent solid tumors. J Clin Oncol. 2009;27(31):5270–7. https://doi.org/10.1200/JCO.2009.22.3883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. National Cancer Institute: SEER Stat Fact Sheets: Endometrial Cancer. Available from: http://seer.cancer.gov/statfacts/html/corp.html

  43. Flynn JP, Gerriets V. Pembrolizumab. [Updated 2022 Jun 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK546616/

  44. Chen S, Wu Z, Shi F, Mai Q, Wang L, Wang F, Zhuang W, Chen X, Chen H, Xu B, Lai J, Guo W. Lenvatinib plus TACE with or without pembrolizumab for the treatment of initially unresectable hepatocellular carcinoma harbouring PD-L1 expression: a retrospective study. J Cancer Res Clin Oncol. 2022;148(8):2115–25. https://doi.org/10.1007/s00432-021-03767-4.

    Article  CAS  PubMed  Google Scholar 

  45. Mittica G, Ghisoni E, Giannone G, Aglietta M, Genta S, Valabrega G. Checkpoint inhibitors in endometrial cancer: preclinical rationale and clinical activity. Oncotarget. 2017;8(52):90532–44. https://doi.org/10.18632/oncotarget.20042.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gómez-Raposo C, Merino Salvador M, Aguayo Zamora C, García de Santiago B, Casado SE. Immune checkpoint inhibitors in endometrial cancer. Crit Rev Oncol Hematol. 2021;161:103306. https://doi.org/10.1016/j.critrevonc.2021.103306.

    Article  PubMed  Google Scholar 

  47. Redondo A, Gallego A, Mendiola M. Dostarlimab for the treatment of advanced endometrial cancer. Expert Rev Clin Pharmacol. 2022;15(1):1–9. https://doi.org/10.1080/17512433.2022.2044791.

    Article  CAS  PubMed  Google Scholar 

  48. Oaknin A, Tinker AV, Gilbert L, Samouëlian V, Mathews C, Brown J, Barretina-Ginesta MP, Moreno V, Gravina A, Abdeddaim C, Banerjee S, Guo W, Danaee H, Im E, Sabatier R. Clinical activity and safety of the anti-PD-1 monoclonal antibody dostarlimab for patients with recurrent or advanced dMMR endometrial cancer. Future Oncol. 2021;17(29):3781–5. https://doi.org/10.2217/fon-2021-0598.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from Des Moines University for Dr. Yujiang Fang (IOER 112-3749).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

YF initiated the idea. ACJ, KHB, TG, LAS, CRF, EDF, QB, and HDL wrote the draft. YF, LD, and MRW made critical revision to the draft.

Corresponding authors

Correspondence to Lijun Dong or Yujiang Fang.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical approval

By creating a review paper, there is no novel research; only research collected from prior sources that have been approved through the peer review process.

Informed consent

Since this is a review paper, consent is not applicable. No data have been collected needing informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, A.C., Brown, K.H., Guan, T. et al. The past, present, and future of immunotherapy for endometrial adenocarcinoma. Med Oncol 40, 186 (2023). https://doi.org/10.1007/s12032-023-02040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02040-7

Keywords

Navigation