Skip to main content

Advertisement

Log in

The crosstalk between ubiquitin-conjugating enzyme E2Q1 and p53 in colorectal cancer: An in vitro analysis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is a prevalent gastrointestinal neoplasm that ranks fourth in terms of cancer-related deaths worldwide. In the process of CRC progression, multiple ubiquitin-conjugating enzymes (E2s) are involved; UBE2Q1 is one of those newly identified E2s that is markedly expressed in human colorectal tumors. Since p53 is a well-known tumor suppressor and defined as a key factor to be targeted by the ubiquitin–proteasome system, we hypothesized that UBE2Q1 might contribute to CRC progression through the modulation of p53. Using the lipofection method, the cultured SW480 and LS180 cells were transfected with the UBE2Q1 ORF-containing pCMV6-AN-GFP vector. Then, quantitative RT-PCR was used to assay the mRNA expression levels of p53’s target genes, i.e., Mdm2, Bcl2, and Cyclin E. Moreover, Western blot analysis was performed to confirm the cellular overexpression of UBE2Q1 and assess the protein levels of p53, pre- and post-transfection. The expression of p53’s target genes were cell line-dependent except for Mdm2 that was consistent with the findings of p53. The results of Western blotting demonstrated that the protein levels of p53 were greatly lower in UBE2Q1-transfected SW480 cells compared to the control SW480 cells. However, the reduced levels of p53 protein were not remarkable in the transfected LS180 cells compared to the control cells. The suppression of p53 is believed to be the result of UBE2Q1-dependent ubiquitination and its subsequent proteasomal degradation. Furthermore, the ubiquitination of p53 can act as a signal for degradation-independent functions, such as nuclear export and suppressing the p53’s transcriptional activities. In this context, the decreased Mdm2 levels can moderate the proteasome-independent mono-ubiquitination of p53. The ubiquitinated p53 modulates the transcriptional levels of target genes. Therefore, the up-modulation of UBE2Q1 may influence the transcriptional activities depending on p53, and thereby contributes to CRC progression through regulating the p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kadkhoda S, Taslimi R, Noorbakhsh F, Darbeheshti F, Bazzaz JT, Ghafouri-Fard S, et al. Importance of Circ0009910 in colorectal cancer pathogenesis as a possible regulator of miR-145 and PEAK1. World J Surg Oncol. 2021;19(1):1–11.

    Google Scholar 

  2. Sinicrope FA. Increasing incidence of early-onset colorectal cancer. N Engl J Med. 2022;386(16):1547–58.

    CAS  PubMed  Google Scholar 

  3. Cho YA, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, et al. Genetic risk score, combined lifestyle factors and risk of colorectal cancer. Cancer Res Treat: Off J Korean Cancer Assoc. 2019;51(3):1033–40.

    CAS  Google Scholar 

  4. Dolatkhah R, Somi MH, Kermani IA, Ghojazadeh M, Jafarabadi MA, Farassati F, et al. Increased colorectal cancer incidence in Iran: a systematic review and meta-analysis. BMC Public Health. 2015;15(1):1–14.

    Google Scholar 

  5. Lizarbe MA, Calle-Espinosa J, Fernández-Lizarbe E, Fernández-Lizarbe S, Robles MÁ, Olmo N, et al. Colorectal cancer: from the genetic model to posttranscriptional regulation by noncoding RNAs. BioMed Res Int. 2017. https://doi.org/10.1038/s41418-022-00989-y.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kennedy MC, Lowe SW. Mutant p53: it’s not all one and the same. Cell Death Differ. 2022;29(5):983–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liebl MC, Hofmann TG. The role of p53 signaling in colorectal cancer. Cancers. 2021;13(9):2125.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8(4):275–83.

    CAS  PubMed  Google Scholar 

  9. Sabapathy K, Lane DP. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 2018;15(1):13–30.

    CAS  PubMed  Google Scholar 

  10. Lacroix M, Toillon R-A, Leclercq G. p53 and breast cancer, an update. Endocr Relat Cancer. 2006;13(2):293–325.

    CAS  PubMed  Google Scholar 

  11. Tokino T, Nakamura Y. The role of p53-target genes in human cancer. Crit Rev Oncol Hematol. 2000;33(1):1–6.

    CAS  PubMed  Google Scholar 

  12. Ravizza R, Gariboldi MB, Passarelli L, Monti E. Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin. BMC Cancer. 2004;4(1):92.

    PubMed  PubMed Central  Google Scholar 

  13. Yang Y, Li C-CH, Weissman AM. Regulating the p53 system through ubiquitination. Oncogene. 2004;23(11):2096–106.

    CAS  PubMed  Google Scholar 

  14. Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol. 2005;23(21):4776–89.

    CAS  PubMed  Google Scholar 

  15. Saffari-Chaleshtori J, Asadi-Samani M, Rasouli M, Shafiee SM. Autophagy and ubiquitination as two major players in colorectal cancer: a review on recent patents. Recent Pat Anti-Cancer Drug Discov. 2020;15(2):143–53.

    CAS  Google Scholar 

  16. Dahlmann B. Role of proteasomes in disease. BMC Biochem. 2007;8(Suppl 1):S3.

    PubMed  PubMed Central  Google Scholar 

  17. Brooks CL, Gu W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol. 2003;15(2):164–71.

    CAS  PubMed  Google Scholar 

  18. Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res. 2003;1(14):1001–8.

    CAS  PubMed  Google Scholar 

  19. Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon J-C, et al. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem. 2004;279(40):42169–81.

    CAS  PubMed  Google Scholar 

  20. Brooks CL, Gu W. p53 regulation by ubiquitin. FEBS Lett. 2011;585(18):2803–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pant V, Lozano G. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev. 2014;28(16):1739–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bremm A, Komander D. Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends Biochem Sci. 2011;36(7):355–63.

    CAS  PubMed  Google Scholar 

  23. Tang X-K, Wang K-J, Tang Y-K, Chen L. Effects of ubiquitin-conjugating enzyme 2C on invasion, proliferation and cell cycling of lung cancer cells. Asian Pac J Cancer Prev: APJCP. 2013;15(7):3005–9.

    Google Scholar 

  24. Waite KA, Eng C. BMP2 exposure results in decreased PTEN protein degradation and increased PTEN levels. Hum Mol Genet. 2003;12(6):679–84.

    CAS  PubMed  Google Scholar 

  25. Gerard B, Sanders MA, Visscher DW, Tait L, Shekhar MP. (2012) Lysine394 is a novel Rad6B-induced ubiquitination site on beta-catenin. Biochim et Biophys Acta (BBA)-Mol Cell Res. 1823;10:1686–96.

    Google Scholar 

  26. Seghatoleslam A, Nikseresht M, Shafiee SM, Monabati A, Namavari MM, Talei A, et al. Expression of the novel human gene, UBE2Q1, in breast tumors. Mol Biol Rep. 2012;39(5):5135–41.

    CAS  PubMed  Google Scholar 

  27. Nikseresht M, Seghatoleslam A, Monabati A, Talei A, Ghalati FB, Owji AA. Overexpression of the novel human gene, UBE2Q2, in breast cancer. Cancer Genet Cytogenet. 2010;197(2):101–6.

    CAS  PubMed  Google Scholar 

  28. Shafiee SM, Seghatoleslam A, Nikseresht M, Hosseini SV, Alizadeh-Naeeni M, Safaei A, et al. UBE2Q1 expression in human colorectal tumors and cell lines. Mol Biol Rep. 2013;40(12):7045–51.

    CAS  PubMed  Google Scholar 

  29. Shafiee SM, Seghatoleslam A, Nikseresht M, Hosseini SV, Alizadeh-Naeeni M, Safaei A, et al. Expression Status of UBE2Q2 in colorectal primary tumors and cell lines. Iranian J Med Sci. 2014;39(2 Suppl):196.

    Google Scholar 

  30. Seghatoleslam A, Bozorg-Ghalati F, Monabati A, Nikseresht M, Owji AA. UBE2Q1, as a down regulated gene in pediatric acute lymphoblastic leukemia. Int J Mol Cell Med. 2014;3(2):95.

    PubMed  PubMed Central  Google Scholar 

  31. Bordbar M. Expression of UBE2Q2, a putative member of the ubiquitin-conjugating enzyme family in pediatric acute lymphoblastic leukemia. Arch Iran Med. 2012;15(6):352.

    PubMed  Google Scholar 

  32. Seghatoleslam A, Zambrano A, Millon R, Ganguli G, Argentini M, Cromer A, et al. Analysis of a novel human gene, LOC92912, over-expressed in hypopharyngeal tumours. Biochem Biophys Res Commun. 2006;339(1):422–9.

    CAS  PubMed  Google Scholar 

  33. Bai L, Zhu W-G. p53: structure, function and therapeutic applications. J Cancer Mol. 2006;2(4):141–53.

    CAS  Google Scholar 

  34. Miyashita T, Harigai M, Hanada M, Reed JC. Identification of a p53-dependent negative response element in the bcl-2 gene. Can Res. 1994;54(12):3131–5.

    CAS  Google Scholar 

  35. Otsuka K, Ochiya T. Genetic networks lead and follow tumor development: microRNA regulation of cell cycle and apoptosis in the p53 pathways. BioMed Res Int. 2014. https://doi.org/10.1155/2014/749724.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee J, Gu W. The multiple levels of regulation by p53 ubiquitination. Cell Death Differ. 2010;17(1):86–92.

    CAS  PubMed  Google Scholar 

  37. DeVine T, Dai M-S. Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Curr Pharm Des. 2013;19(18):3248.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lai Z, Yang T, Kim YB, Sielecki TM, Diamond MA, Strack P, et al. Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc Natl Acad Sci. 2002;99(23):14734–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev. 2012;26(12):1268–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G. Mutant p53: an oncogenic transcription factor. Oncogene. 2007;26(15):2212–9.

    CAS  PubMed  Google Scholar 

  41. Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell. 2006;10(3):191–202.

    PubMed  Google Scholar 

  42. Rochette PJ, Bastien N, Lavoie J, Guérin SL, Drouin R. SW480, a p53 double-mutant cell line retains proficiency for some p53 functions. J Mol Biol. 2005;352(1):44–57.

    CAS  PubMed  Google Scholar 

  43. Shafiee S, Rasti M, Seghatoleslam A, Azimi T, Owji A. UBE2Q1 in a human breast carcinoma cell line: overexpression and interaction with p53. Asian Pac J Cancer Prev: APJCP. 2014;16(9):3723–7.

    Google Scholar 

  44. Ahmed D, Eide P, Eilertsen I, Danielsen S, Eknaes M, Hektoen M, et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2013;2(9): e71.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoon W-H, Lee S-K, Song K-S, Kim J-S, Kim T-D, Li G, et al. The tumorigenic, invasive and metastatic potential of epithelial and round subpopulations of the SW480 human colon cancer cell line. Mol Med Rep. 2008;1(5):763–8.

    CAS  PubMed  Google Scholar 

  46. Lukashchuk N, Vousden KH. Ubiquitination and degradation of mutant p53. Mol Cell Biol. 2007;27(23):8284–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol. 2000;20(22):8458–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Love IM, Grossman SR. it takes 15 to tango making sense of the many ubiquitin ligases of p53. Genes Cancer. 2012;3(3–4):249–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Esser C, Scheffner M, Höhfeld J. The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem. 2005;280(29):27443–8.

    CAS  PubMed  Google Scholar 

  50. Grelle G, Kostka S, Otto A, Kersten B, Genser KF, Müller E-C, et al. Identification of VCP/p97, carboxyl terminus of Hsp70-interacting protein (CHIP), and amphiphysin II interaction partners using membrane-based human proteome arrays. Mol Cell Proteomics. 2006;5(2):234–44.

    CAS  PubMed  Google Scholar 

  51. Min J-N, Whaley RA, Sharpless NE, Lockyer P, Portbury AL, Patterson C. CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol Cell Biol. 2008;28(12):4018–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kruse J-P, Gu W. MSL2 promotes Mdm2-independent cytoplasmic localization of p53. J Biol Chem. 2009;284(5):3250–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Laine A, Ze R. Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene. 2007;26(10):1477–83.

    CAS  PubMed  Google Scholar 

  54. Laine A, Topisirovic I, Zhai D, Reed JC, Borden KL, Ze R. Regulation of p53 localization and activity by Ubc13. Mol Cell Biol. 2006;26(23):8901–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nie L, Sasaki M, Maki CG. Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J Biol Chem. 2007;282(19):14616–25.

    CAS  PubMed  Google Scholar 

  56. Brooks CL, Gu W. Dynamics in the p53-Mdm2 ubiquitination pathway. Cell Cycle. 2004;3(7):893–7.

    Google Scholar 

  57. Chang R, Wei L, Lu Y, Cui X, Lu C, Liu L, et al. Upregulated expression of ubiquitin-conjugating enzyme E2Q1 (UBE2Q1) is associated with enhanced cell proliferation and poor prognosis in human hapatocellular carcinoma. J Mol Histol. 2015;46(1):45–56.

    CAS  PubMed  Google Scholar 

  58. Wan C, Chen J, Hu B, Zou H, Li A, Guo A, et al. Downregulation of UBE2Q1 is associated with neuronal apoptosis in rat brain cortex following traumatic brain injury. J Neurosci Res. 2014;92(1):1–12.

    CAS  PubMed  Google Scholar 

  59. Laptenko O, Prives C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 2006;13(6):951–61.

    CAS  PubMed  Google Scholar 

  60. Hemann M, Lowe S. The p53–Bcl-2 connection. Cell Death Differ. 2006;13(8):1256–9.

    CAS  PubMed  Google Scholar 

  61. Koehler BC, Scherr A-L, Lorenz S, Urbanik T, Kautz N, Elssner C, et al. Beyond cell death—Antiapoptotic bcl-2 proteins regulate migration and invasion of colorectal cancer cells in vitro. PLoS ONE. 2013;8(10):e76446.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Simone C, Resta N, Bagella L, Giordano A, Guanti G. Cyclin E and chromosome instability in colorectal cancer cell lines. Mol Pathol. 2002;55(3):200.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Agostino S, Sorrentino G, Ingallina E, Valenti F, Ferraiuolo M, Bicciato S, et al. YAP enhances the pro-proliferative transcriptional activity of mutant p53 proteins. EMBO Rep. 2016;17(2):188–201.

    PubMed  Google Scholar 

  64. Alam S, Yadav V, Bajaj S, Datta A, Dutta S, Bhattacharyya M, et al. DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53. Cell Death Differ. 2016;23(4):707–22.

    CAS  PubMed  Google Scholar 

  65. Zhang P, Zuo Z, Wu A, Shang W, Bi R, Jin Q, et al. miR-600 inhibits cell proliferation, migration and invasion by targeting p53 in mutant p53-expressing human colorectal cancer cell lines. Oncol Lett. 2017;13(3):1789–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fahmidehkar MA, Shafiee SM, Eftekhar E, Mahbudi L, Seghatoleslam A. Induction of cell proliferation, clonogenicity and cell accumulation in S phase as a consequence of human UBE2Q1 overexpression. Oncol Lett. 2016;12(3):2169–74.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research has been extracted from the M. Sc. thesis of Maryam Rasouli and was supported by the Grant Number 93-05-29-7123 from the Vice-chancellor for Research Affairs of Shiraz University of Medical Sciences, Shiraz, Iran.

Funding

This study was supported by the Vice-chancellor for Research Affairs of Shiraz University of Medical Sciences (Grant number: 93-05-29-7123).

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that all data were generated in-house and that no paper mill was used. All authors contributed to the study’s conception and design. Material preparation, data collection, and analyses were performed by MR, SK, OV, SD, and AS. The first draft of the manuscript was written by MR, SK, and OV, and all authors commented on previous versions of the manuscript. Supervision and project administration was conducted by SMS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sayed Mohammad Shafiee.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest to declare.

Ethical approval

This is an in-vitro study. The Research Ethics Committee of Shiraz University of Medical Sciences has confirmed that no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasouli, M., Khakshournia, S., Vakili, O. et al. The crosstalk between ubiquitin-conjugating enzyme E2Q1 and p53 in colorectal cancer: An in vitro analysis. Med Oncol 40, 199 (2023). https://doi.org/10.1007/s12032-023-02039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02039-0

Keywords

Navigation