Skip to main content

Advertisement

Log in

Propionate-producing Veillonella parvula regulates the malignant properties of tumor cells of OSCC

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Oral squamous cell carcinoma (OSCC), main head and neck squamous cell carcinomas (HNSCCs), remains a global health concern with unknown pathogenesis. Veillonella parvula NCTC11810 was observed to decrease in saliva microbiome of OSCC patients in this study and the aim was to detect the novel role of Veillonella parvula NCTC11810 in regulating the biological characteristics of OSCC through TROP2/PI3K/Akt pathway. Oral microbial community changes of OSCC patients were detected by 16S rDNA gene sequencing technology. CCK8 assay, Transwell assay, and Annexin V-FITC/PI staining were used for proliferation, invasion, and apoptosis analysis of OSCC cell lines. Expression of proteins were determined by Western blotting analysis. Veillonella parvula NCTC11810 showed decreased in saliva microbiome of TROP2 high-expressed OSCC patients. Culture supernatant of Veillonella parvula NCTC11810 promoted the apoptosis and inhibited the proliferation and invasion ability of HN6 cells, while sodium propionate (SP), the main metabolite of Veillonella parvula NCTC11810, played a similar role through the inhibition of TROP2/PI3K/Akt pathway. Studies above supported the proliferation-inhibiting, invasion-inhibiting, and apoptosis-promoting function of Veillonella parvula NCTC11810 in OSCC cells which provided new insights into oral microbiota and their metabolite as a therapeutic method for OSCC patients with TROP2 high expressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tang G, et al. TROP2 increases growth and metastasis of human oral squamous cell carcinoma through activation of the PI3K/Akt signaling pathway[J]. Int J Mol Med. 2019;44(6):2161–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wei J, et al. Salvianolic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1α signaling pathway[J]. Cell Death Dis. 2018;9(6):599.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roi A, et al. The challenges of OSCC diagnosis: salivary cytokines as potential biomarkers[J]. J Clin Med. 2020;9(9):2866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jia L, et al. Trop2 inhibition of P16 expression and the cell cycle promotes intracellular calcium release in OSCC[J]. Int J Biol Macromol. 2020;164:2409–17.

    Article  CAS  PubMed  Google Scholar 

  5. Sasahira T, Bosserhoff AK, Kirita T. The importance of melanoma inhibitory activity gene family in the tumor progression of oral cancer[J]. Pathol Int. 2018;68(5):278–86.

    Article  CAS  PubMed  Google Scholar 

  6. Lipinski M, et al. Human trophoblast cell-surface antigens defined by monoclonal antibodies[J]. Proc Natl Acad Sci USA. 1981;78:5147–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lenárt S, et al. Trop2: jack of all trades, master of none[J]. Cancers (Basel). 2020;12(11):3328.

    Article  PubMed  Google Scholar 

  8. Stewart D, Cristea M. Antibody-drug conjugates for ovarian cancer: current clinical development[J]. Curr Opin Obstet Gynecol. 2019;31(1):18–23.

    Article  PubMed  Google Scholar 

  9. Liu J, et al. A novel human monoclonal Trop2-IgG antibody inhibits ovarian cancer growth in vitro and in vivo[J]. Biochem Biophys Res Commun. 2019;512(2):276–82.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao W, et al. The role and molecular mechanism of Trop2 induced epithelial-mesenchymal transition through mediated β-catenin in gastric cancer[J]. Cancer Med. 2019;8(3):1135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao W, et al. The killing effect of novel bi-specific Trop2/PD-L1 CAR-T cell targeted gastric cance[J]. Am J Cancer Res. 2019;9(8):1846–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jordheim LP, et al. Unexpected growth-promoting effect of Oxaliplatin in excision repair cross-complementation group 1 transfected human colon cancer cells[J]. Pharmacology. 2018;102(3–4):161–8.

    Article  CAS  PubMed  Google Scholar 

  13. Nishimura T, et al. Photoimmunotherapy targeting biliary-pancreatic cancer with humanized anti-TROP2 antibody[J]. Cancer Med. 2019;8(18):7781–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang XD, et al. Trop2 inhibition suppresses the proliferation and invasion of laryngeal carcinoma cells via the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway[J]. Mol Med Rep. 2015;12(1):865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wanger TM, et al. Differential regulation of TROP2 release by PKC isoforms through vesicles and ADAM17[J]. Cell Signal. 2015;27(7):1325–35.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang B, et al. Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation[J]. BMC Cancer. 2020;20(1):815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peterson J, et al. The NIH Human Microbiome Project[J]. Genome Res. 2009;19(12):2317–23.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou CB, Zhou YL, Fang JY. Gut microbiota in cancer immune response and immunotherapy[J]. Trends Cancer. 2021;7(7):647–60.

    Article  CAS  PubMed  Google Scholar 

  19. Gao R, et al. Gut microbiota and colorectal cancer[J]. Eur J Clin Microbiol Infect Dis. 2017;36(5):757–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Angelucci F, et al. Antibiotics, gut microbiota, and Alzheimer’s disease[J]. J Neuroinflammation. 2019;16(1):108.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao H, et al. Variations in oral microbiota associated with oral cancer[J]. Sci Rep. 2017;7(1):11773.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mager DL, et al. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects[J]. J Transl Med. 2005;3:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang L, et al. Variations in oral microbiota composition are associated with a risk of throat cancer[J]. Front Cell Infect Microbiol. 2019;9:205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Börnigen D, et al. Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer[J]. Sci Rep. 2017;7(1):17686.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Granato DC, et al. Meta-omics analysis indicates the saliva microbiome and its proteins associated with the prognosis of oral cancer patients[J]. Biochim Biophys Acta Proteins Proteom. 2021;1869(8):140659.

    Article  CAS  PubMed  Google Scholar 

  26. Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters[J]. Trends Microbiol. 2018;26(7):563–74.

    Article  CAS  PubMed  Google Scholar 

  27. Han JH, et al. The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41[J]. PLoS One. 2014;9(4):e95268.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bindels LB, et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver[J]. Br J Cancer. 2012;107(8):1337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zeng H, et al. Superior inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis: linking dietary fiber to cancer prevention[J]. Nutr Res. 2020;83:63–72.

    Article  CAS  PubMed  Google Scholar 

  30. Thirunavukkarasan M, et al. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells[J]. PLoS One. 2017;12(10):e0186334.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sivaprakasam S, Prasad PD, Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis[J]. Pharmacol Ther. 2016;164:144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang G, et al. High expression of TROP2 is correlated with poor prognosis of oral squamous cell carcinoma[J]. Pathol Res Pract. 2018;214(10):1606–12.

    Article  CAS  PubMed  Google Scholar 

  33. Sherrard LJ, Bell SC, Tunney MM. The role of anaerobic bacteria in the cystic fibrosis airway[J]. Curr Opin Pulm Med. 2016;22(6):637–43.

    Article  CAS  PubMed  Google Scholar 

  34. Brook I. Veillonella infections in children[J]. J Clin Microbiol. 1996;34(5):1283–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo YX, et al. Research progress in the relationship between Veillonella and oral diseases[J]. Hua Xi Kou Qiang Yi Xue Za Zhi. 2020;38(5):576–82.

    PubMed  Google Scholar 

  36. Jia YJ, et al. Association between oral microbiota and cigarette smoking in the chinese population[J]. Front Cell Infect Microbiol. 2021;11:658203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luppens SB, et al. Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm[J]. Oral Microbiol Immunol. 2008;23(3):183–9.

    Article  CAS  PubMed  Google Scholar 

  38. Bajic D, et al. Gut microbiota-derived propionate regulates the expression of reg3 mucosal lectins and ameliorates experimental colitis in mice[J]. J Crohns Colitis. 2020;14(10):1462–72.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Høgh RI, et al. Metabolism of short-chain fatty acid propionate induces surface expression of NKG2D ligands on cancer cells[J]. Faseb J. 2020;34(11):15531–46.

    Article  PubMed  Google Scholar 

  40. Gu QZ, et al. TROP2 promotes cell proliferation and migration in osteosarcoma through PI3K/AKT signaling[J]. Mol Med Rep. 2018;18(2):1782–8.

    CAS  PubMed  Google Scholar 

  41. Li X, et al. TROP2 promotes proliferation, migration and metastasis of gallbladder cancer cells by regulating PI3K/AKT pathway and inducing EMT[J]. Oncotarget. 2017;8(29):47052–63.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rivera C. Essentials of oral cancer[J]. Int J Clin Exp Pathol. 2015;8(9):11884–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fong D, et al. TROP2: a novel prognostic marker in squamous cell carcinoma of the oral cavity[J]. Mod Pathol. 2008;21(2):186–91.

    Article  CAS  PubMed  Google Scholar 

  44. Guerra E, et al. The Trop-2 signalling network in cancer growth. Oncogene. 2013;32(12):1594–600.

    Article  CAS  PubMed  Google Scholar 

  45. Ambrogi F, et al. Trop-2 is a determinant of breast cancer survival[J]. PLoS One. 2014;9(5):e96993.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cubas R, et al. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway[J]. Mol Cancer. 2010;9:253.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Almeida LY, et al. FASN inhibition sensitizes metastatic OSCC cells to cisplatin and paclitaxel by downregulating cyclin B1[J]. Oral Dis. 2023;29(2):649–60.

    Article  PubMed  Google Scholar 

  48. Meng X, et al. The role of non-coding RNAs in drug resistance of oral squamous cell carcinoma and therapeutic potential[J]. Cancer Commun (Lond). 2021;41(10):981–1006.

    Article  PubMed  Google Scholar 

  49. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota[J]. Environ Microbiol. 2017;19(1):29–41.

    Article  CAS  PubMed  Google Scholar 

  50. Molinaro A, et al. Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat Commun. 2020;11(1):5881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (81872426), the Nanjing Medical Science and Technology Development Fund (YKK21152), and the Science and Technology Development Fund of Nanjing Medical University (NMUB20210072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Zhang or Genxiong Tang.

Ethics declarations

Conflict of interest

The authors declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12032_2023_1962_MOESM1_ESM.pdf

Supplementary file1 (PDF 102 KB)—The 16 S-V4 amplicon sequencing and nucleotide Blast program of clone 12 from Columbia blood plates. (A) The 16 SV4 amplicon sequence result of clone 12 picked out from Columbia blood plates; (B) The sequencing results showed that the nucleotide sequence presented a high percentage of similarity (99.71%) using the Nucleotide BLAST program with a peculiar microorganism Veillonella parvula NCTC11810

Supplementary file2 (PDF 45 KB)—The total apoptosis ratio of HOK and HN6 cells treated with SP; n=3, ****p<0.0001

12032_2023_1962_MOESM3_ESM.pdf

Supplementary file3 (PDF 485 KB)—The western blotting result of cleaved GSDMD expression level in HN6 cells; Supernatant: culture supernatant of Veillonella parvula NCTC11810-treated group; SP-Treated: sodium propionate-treated group; Heated-V.P.: Heat-inactivated Veillonella parvula NCTC11810-treated group; V.P.: Veillonella parvula NCTC11810-treated group

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, X., Chen, Y., Cui, D. et al. Propionate-producing Veillonella parvula regulates the malignant properties of tumor cells of OSCC. Med Oncol 40, 98 (2023). https://doi.org/10.1007/s12032-023-01962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-01962-6

Keywords

Navigation