Skip to main content

Advertisement

Log in

ABT-737 suppresses aberrant Hedgehog pathway and overcomes resistance to smoothened antagonists by blocking Gli

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Abnormally activated Hedgehog (Hh) pathway has been linked to multiple types of cancers including medulloblastoma (MB). Current Hh-targeted drug development projects mainly focus on antagonizing the upstream oncoprotein Smoothened (Smo). However, the effectiveness of Smo inhibitors is compromised by primary and acquired resistance, which is caused by mutations of Smo or other downstream components. Here, we conducted a cellular screening of small-molecule compounds and identified ABT-737 as a selective Hh inhibitor resulting in active suppression of human Hh-dependent MB cells. Mechanistically, ABT-737 suppressed Hh signals far-downstream of Smo and Sufu at Gli transcriptional effector level. In line with this, ABT-737 potentially inhibited wild-type and drug-resistant mutant Smo. More importantly, ABT-737 also delayed the growth of drug-refractory Hh-dependent MB xenografts derived from genetically engineered mouse model in vivo. These findings identify ABT-737 as a therapeutical substance for cancers with excessive Hh signaling activity, especially for those with primary or acquired resistance to Smo inhibitors in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors on reasonable request.

References

  1. Jiang J, Hui CC. Hedgehog signaling in development and cancer. Dev Cell. 2008;15(6):801–12. https://doi.org/10.1016/j.devcel.2008.11.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu F, et al. Hedgehog signaling: From basic biology to cancer therapy. Cell Chem Biol. 2017;24(3):252–80. https://doi.org/10.1016/j.chembiol.2017.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raleigh DR, Reiter JF. Misactivation of Hedgehog signaling causes inherited and sporadic cancers. J Clin Invest. 2019;129(2):465–75. https://doi.org/10.1172/jci120850.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reifenberger J, et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 1998;58(9):1798–803.

    CAS  PubMed  Google Scholar 

  5. Pugh TJ, et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature. 2012;488(7409):106–10. https://doi.org/10.1038/nature11329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor MD, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet. 2002;31(3):306–10. https://doi.org/10.1038/ng916.

    Article  CAS  PubMed  Google Scholar 

  7. Kool M, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25(3):393–405. https://doi.org/10.1016/j.ccr.2014.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang W, et al. Constitutive GLI1 expression in chondrosarcoma is regulated by major vault protein via mTOR/S6K1 signaling cascade. Cell Death Differ. 2021;28(7):2221–37. https://doi.org/10.1038/s41418-021-00749-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tosello V, et al. Cross-talk between GLI transcription factors and FOXC1 promotes T-cell acute lymphoblastic leukemia dissemination. Leukemia. 2021;35(4):984–1000. https://doi.org/10.1038/s41375-020-0999-2.

    Article  CAS  PubMed  Google Scholar 

  10. Yang J, et al. PGE2-JNK signaling axis non-canonically promotes Gli activation by protecting Gli2 from ubiquitin-proteasomal degradation. Cell Death Dis. 2021;12(7):707. https://doi.org/10.1038/s41419-021-03995-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steele NG, et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin Cancer Res. 2021;27(7):2023–37. https://doi.org/10.1158/1078-0432.Ccr-20-3715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Petty AJ, et al. Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment. J Clin Invest. 2019;129(12):5151–62. https://doi.org/10.1172/jci128644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hinshaw DC, et al. Hedgehog signaling regulates metabolism and polarization of mammary tumor-associated macrophages. Cancer Res. 2021;81(21):5425–37. https://doi.org/10.1158/0008-5472.Can-20-1723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sekulic A, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366(23):2171–9. https://doi.org/10.1056/NEJMoa1113713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lear JT, et al. Long-term efficacy and safety of sonidegib in patients with locally advanced and metastatic basal cell carcinoma: 30-month analysis of the randomized phase 2 BOLT study. J Eur Acad Dermatol Venereol. 2018;32(3):372–81. https://doi.org/10.1111/jdv.14542.

    Article  CAS  PubMed  Google Scholar 

  16. Cortes JE, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia. 2019;33(2):379–89. https://doi.org/10.1038/s41375-018-0312-9.

    Article  CAS  PubMed  Google Scholar 

  17. Sharpe HJ, et al. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell. 2015;27(3):327–41. https://doi.org/10.1016/j.ccell.2015.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Atwood SX, et al. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell. 2015;27(3):342–53. https://doi.org/10.1016/j.ccell.2015.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao X, et al. RAS/MAPK activation drives resistance to smo inhibition, metastasis, and tumor evolution in Shh pathway-dependent tumors. Cancer Res. 2015;75(17):3623–35. https://doi.org/10.1158/0008-5472.Can-14-2999-t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang J, et al. ABT-199 inhibits Hedgehog pathway by acting as a competitive inhibitor of oxysterol, rather as a BH3 mimetic. Acta Pharmacol Sin. 2021;42(6):1005–13. https://doi.org/10.1038/s41401-020-00504-4.

    Article  CAS  PubMed  Google Scholar 

  21. Mo J, et al. Inhibition of the FACT complex targets aberrant hedgehog signaling and overcomes resistance to smoothened antagonists. Cancer Res. 2021;81(11):3105–20. https://doi.org/10.1158/0008-5472.Can-20-3186.

    Article  CAS  PubMed  Google Scholar 

  22. Tang Y, et al. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med. 2014;20(7):732–40. https://doi.org/10.1038/nm.3613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu CC, et al. mTORC1-mediated inhibition of 4EBP1 is essential for hedgehog signaling-driven translation and medulloblastoma. Dev Cell. 2017;43(6):673-688.e5. https://doi.org/10.1016/j.devcel.2017.10.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beauchamp EM, et al. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J Clin Invest. 2011;121(1):148–60. https://doi.org/10.1172/JCI42874.

    Article  CAS  PubMed  Google Scholar 

  25. Petros AM, et al. Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J Med Chem. 2006;49(2):656–63. https://doi.org/10.1021/jm0507532.

    Article  CAS  PubMed  Google Scholar 

  26. Kim J, et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell. 2010;17(4):388–99. https://doi.org/10.1016/j.ccr.2010.02.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hatton BA, et al. The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res. 2008;68(6):1768–76. https://doi.org/10.1158/0008-5472.CAN-07-5092.

    Article  CAS  PubMed  Google Scholar 

  28. Buonamici S, et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Translational Med. 2010;2(51):5170. https://doi.org/10.1126/scitranslmed.3001599.

    Article  CAS  Google Scholar 

  29. Wang J, et al. AT-101 inhibits hedgehog pathway activity and cancer growth. Cancer Chemother Pharmacol. 2015;76(3):461–9. https://doi.org/10.1007/s00280-015-2812-x.

    Article  CAS  PubMed  Google Scholar 

  30. Taipale J, et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature. 2000;406(6799):1005–9. https://doi.org/10.1038/35023008.

    Article  CAS  PubMed  Google Scholar 

  31. Chen JK, et al. Small molecule modulation of Smoothened activity. Proc Natl Acad Sci U S A. 2002;99(22):14071–6. https://doi.org/10.1073/pnas.182542899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Triscott J, et al. Personalizing the treatment of pediatric medulloblastoma: Polo-like kinase 1 as a molecular target in high-risk children. Cancer Res. 2013;73(22):6734–44. https://doi.org/10.1158/0008-5472.Can-12-4331.

    Article  CAS  PubMed  Google Scholar 

  33. Di Magno L, et al. Phenformin inhibits hedgehog-dependent tumor growth through a complex I-Independent Redox/Corepressor module. Cell Rep. 2020;30(6):1735–17527. https://doi.org/10.1016/j.celrep.2020.01.024.

    Article  CAS  PubMed  Google Scholar 

  34. Parchure A, Vyas N, Mayor S. Wnt and hedgehog: secretion of lipid-modified morphogens. Trends Cell Biol. 2018;28(2):157–70. https://doi.org/10.1016/j.tcb.2017.10.003.

    Article  CAS  PubMed  Google Scholar 

  35. Coquenlorge S, et al. GLI2 Modulated by SUFU and SPOP induces intestinal stem cell niche signals in development and tumorigenesis. Cell Rep. 2019;27(10):3006–18. https://doi.org/10.1016/j.celrep.2019.05.016.

    Article  CAS  PubMed  Google Scholar 

  36. Regl G, et al. Human GLI2 and GLI1 are part of a positive feedback mechanism in basal cell carcinoma. Oncogene. 2002;21(36):5529–39. https://doi.org/10.1038/sj.onc.1205748.

    Article  CAS  PubMed  Google Scholar 

  37. Dijkgraaf GJ, et al. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res. 2011;71(2):435–44. https://doi.org/10.1158/0008-5472.Can-10-2876.

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez-Blanco J, et al. A CK1α Activator Penetrates the Brain and Shows Efficacy Against Drug-resistant Metastatic Medulloblastoma. Clin Cancer Res. 2019;25(4):1379–88. https://doi.org/10.1158/1078-0432.Ccr-18-1319.

    Article  CAS  PubMed  Google Scholar 

  39. Robarge KD, et al. GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett. 2009;19(19):5576–81. https://doi.org/10.1016/j.bmcl.2009.08.049.

    Article  CAS  PubMed  Google Scholar 

  40. Liu G, et al. Discovery of novel macrocyclic hedgehog pathway inhibitors acting by suppressing the Gli-mediated transcription. J Med Chem. 2017;60(19):8218–45. https://doi.org/10.1021/acs.jmedchem.7b01185.

    Article  CAS  PubMed  Google Scholar 

  41. Wu X, et al. Extra-mitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFU tumour suppressor. Nat Cell Biol. 2017;19(10):1226–36. https://doi.org/10.1038/ncb3616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Levesley J, et al. RASSF1A and the BH3-only mimetic ABT-737 promote apoptosis in pediatric medulloblastoma cell lines. Neuro Oncol. 2011;13(12):1265–76. https://doi.org/10.1093/neuonc/nor129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pazzaglia L, et al. Genetic and molecular alterations in rhabdomyosarcoma mRNA overexpression of MCL1 and MAP2K4 genes. Histol Histopathol. 2009;24(1):61–7. https://doi.org/10.14670/hh-24.61.

    Article  CAS  PubMed  Google Scholar 

  44. Graab U, Hahn H, Fulda S. Identification of a novel synthetic lethality of combined inhibition of hedgehog and PI3K signaling in rhabdomyosarcoma. Oncotarget. 2015;6(11):8722–35. https://doi.org/10.18632/oncotarget.2726.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Meister MT, et al. Concomitant targeting of Hedgehog signaling and MCL-1 synergistically induces cell death in Hedgehog-driven cancer cells. Cancer Lett. 2019;465:1–11. https://doi.org/10.1016/j.canlet.2019.08.012.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by grants from Chinese Natural Science Foundation (No. 81573452, 81773767).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by WH. The first draft of the manuscript was written by JW and WH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wenfu Tan or Juan Wang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

All animal studies were approved by and conformed to the policies and regulations of the Animal Care and Use Committee of Shanghai University, China (Date Jul. 8, 2019 /No.2019–0020).

Consent for publication

All authors gave final approval of the version to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Liu, H., Tan, W. et al. ABT-737 suppresses aberrant Hedgehog pathway and overcomes resistance to smoothened antagonists by blocking Gli. Med Oncol 39, 188 (2022). https://doi.org/10.1007/s12032-022-01794-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01794-w

Keywords

Navigation