Skip to main content

Advertisement

Log in

Effects of folate-conjugated Fe2O3@Au core–shell nanoparticles on oxidative stress markers, DNA damage, and histopathological characteristics: evidence from in vitro and in vivo studies

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The aim of this work was to assess the cytotoxicity, genotoxicity, and histopathological effects of Fe2O3@Au-FA NPs using in vitro and in vivo models. Cytotoxicity and cellular uptake of nanoparticles (NPs) by HUVECs were examined via 3‐(4, 5‐Dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide (MTT) assay and inductively coupled plasma-mass-spectrometry (ICP-MS). This safe dose was then used for cytotoxicity assays, including total protein, total antioxidant capacity, lipid peroxidation, cell membrane integrity, reactive oxygen species, enzyme activity, and DNA damage. In the animal model, 32 Wistar rats were randomly categorized into 4 groups and received intraperitoneal injections of NPs. Blood samples for biochemical properties and histopathological changes were investigated. MTT results indicated 20 μg/ml as the safe dose for NPs. According to ICP-MS, treated cells showed significantly higher levels of the intracellular content of Fe (p < 0.001) and Au (p < 0.01) compared with the control group. In vitro tests did not show any significant cytotoxicity or genotoxicity at the safe dose of NPs. We found no significant elevation in intracellular γ-H2AX levels after treatment of HUVEC cells with Fe2O3@Au core–shell NPs (P > 0.05). As for the in vivo analysis, we observed no marked difference in serum biochemical parameters of rats treated with 50 mg/kg and 100 mg/kg doses of our NPs. Histopathological assessments indicated that liver, kidney, and testis tissues were not significantly affected at 50 mg/kg (liver), 50 mg/kg, and 100 mg/kg (kidney and testis) on NPs administration. These findings imply that the nanotoxicity of Fe2O3@Au-FA NPs in HUVECs and animals depends largely on the administrated dose. Our study suggests that Fe2O3@Au-FA NPs at a safe dose could be considered as new candidates in nanobiomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available.

References

  1. Abdolhoseinpour H, Mehrabi F, Shahraki K, Khoshnood RJ, Masoumi B, Yahaghi E, Goudarzi PK. Investigation of serum levels and tissue expression of two genes IGFBP-2 and IGFBP-3 act as potential biomarker for predicting the progression and survival in patients with glioblastoma multiforme. J Neurol Sci. 2016;366:202–6.

    Article  CAS  PubMed  Google Scholar 

  2. Barani, M., Bilal, M., Sabir, F., Rahdar, A., & Kyzas, G. Z. (2020). Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sciences, 118914

  3. Bilal M, Barani M, Sabir F, Rahdar A, Kyzas GZ. Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: An overview. NanoImpact. 2020;20:100251.

    Article  Google Scholar 

  4. Kouzegaran S, Shahraki K, Makateb A, Shahri F, Hatami N, Behnod V, Tanha AS. Prognostic investigations of expression level of two genes FasL and Ki-67 as independent prognostic markers of human retinoblastoma. Oncol Res. 2017;25(4):471.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mukhtar M, Bilal M, Rahdar A, Barani M, Arshad R, Behl T, Bungau S. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates. Chemosensors. 2020;8(4):117.

    Article  CAS  Google Scholar 

  6. Shahraki K, Ahani A, Sharma P, Faranoush M, Bahoush G, Torktaz I, Behnam B. Genetic screening in Iranian patients with retinoblastoma. Eye. 2017;31(4):620–7.

    Article  CAS  PubMed  Google Scholar 

  7. Asadi M, Beik J, Hashemian R, Laurent S, Farashahi A, Mobini M, Shakeri-Zadeh A. MRI-based numerical modeling strategy for simulation and treatment planning of nanoparticle-assisted photothermal therapy. Physica Med. 2019;66:124–32.

    Article  Google Scholar 

  8. Rahdar S, Rahdar A, Sattari M, Hafshejani LD, Tolkou AK, Kyzas GZ. Barium/Cobalt@ polyethylene glycol nanocomposites for dye removal from aqueous solutions. Polymers. 2021;13(7):1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sargazi S, Hajinezhad MR, Rahdar A, Mukhtar M, Karamzadeh-Jahromi M, Almasi-Kashi M, Baino F. CoNi alloy nanoparticles for cancer theranostics: synthesis, physical characterization, in vitro and in vivo studies. Appl Phys A. 2021;127(10):1–12.

    Article  CAS  Google Scholar 

  10. Sargazi S, Hajinezhad MR, Rahdar A, Zafar MN, Awan A, Baino F. Assessment of snfe2o4 nanoparticles for potential application in theranostics: Synthesis, characterization, in vitro, and in vivo toxicity. Materials. 2021;14(4):825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sargazi S, Mukhtar M, Rahdar A, Barani M, Pandey S, Díez-Pascual AM. Active targeted nanoparticles for delivery of poly (ADP-ribose) polymerase (PARP) inhibitors: a preliminary review. Int J Mol Sci. 2021;22(19):10319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alamzadeh Z, Beik J, Mirrahimi M, Shakeri-Zadeh A, Ebrahimi F, Komeili A, Moustakis C. Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. Eur J Pharm Sci. 2020;145:105235.

    Article  CAS  PubMed  Google Scholar 

  13. Hernández-Hernández AA, Aguirre-Álvarez G, Cariño-Cortés R, Mendoza-Huizar LH, Jiménez-Alvarado R. Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chem Pap. 2020;74(11):3809–24.

    Article  CAS  Google Scholar 

  14. Huang C-C, Liao Z-X, Lu H-M, Pan W-Y, Wan W-L, Chen C-C, Sung H-W. Cellular organelle-dependent cytotoxicity of iron oxide nanoparticles and its implications for cancer diagnosis and treatment: a mechanistic investigation. Chem Mater. 2016;28(24):9017–25.

    Article  CAS  Google Scholar 

  15. Martinkova P, Brtnicky M, Kynicky J, Pohanka M. Iron oxide nanoparticles: innovative tool in cancer diagnosis and therapy. Adv Healthcare Mater. 2018;7(5):1700932.

    Article  CAS  Google Scholar 

  16. Shakeri-Zadeh A, Khoei S, Khoee S, Sharifi AM, Shiran M-B. Combination of ultrasound and newly synthesized magnetic nanocapsules affects the temperature profile of CT26 tumors in BALB/c mice. J Med Ultrason. 2015;42(1):9–16.

    Article  Google Scholar 

  17. Changizi O, Khoei S, Mahdavian A, Shirvalilou S, Mahdavi SR, Rad JK. Enhanced radiosensitivity of LNCaP prostate cancer cell line by gold-photoactive nanoparticles modified with folic acid. Photodiagnosis Photodynamic Therapy. 2020;29:101602.

    Article  CAS  PubMed  Google Scholar 

  18. Jagminas, A., & Mikalauskaitė, A. (2019). Functionalization of Iron Oxide-Based Magnetic Nanoparticles with Gold Shells. Photoenergy Thin Film Materials, 617–659

  19. Khademi S, Sarkar S, Shakeri-Zadeh A, Attaran N, Kharrazi S, Ay MR, Ghadiri H. Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: an in vivo study. Int J Biochem Cell Biol. 2019;114:105.

    Article  CAS  Google Scholar 

  20. Mirrahimi M, Khateri M, Beik J, Ghoreishi FS, Dezfuli AS, Ghaznavi H, Shakeri-Zadeh A. Enhancement of chemoradiation by co-incorporation of gold nanoparticles and cisplatin into alginate hydrogel. J Biomed Mater Res B Appl Biomater. 2019;107(8):2658–63.

    Article  CAS  PubMed  Google Scholar 

  21. Movahedi MM, Mehdizadeh A, Koosha F, Eslahi N, Mahabadi VP, Ghaznavi H, Shakeri-Zadeh A. Investigating the photo-thermo-radiosensitization effects of folate-conjugated gold nanorods on KB nasopharyngeal carcinoma cells. Photodiagn Photodyn Ther. 2018;24:324–31.

    Article  CAS  Google Scholar 

  22. Shakeri-Zadeh A, Zareyi H, Sheervalilou R, Laurent S, Ghaznavi H, Samadian H. Gold nanoparticle-mediated bubbles in cancer nanotechnology. J Control Release. 2021;330:49–60.

    Article  CAS  PubMed  Google Scholar 

  23. Gallo J, Kamaly N, Lavdas I, Stevens E, Nguyen QD, Wylezinska-Arridge M, Long NJ. CXCR4-targeted and MMP-responsive iron oxide nanoparticles for enhanced magnetic resonance imaging. Angew Chem Int Ed. 2014;53(36):9550–4.

    Article  CAS  Google Scholar 

  24. Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Chen X. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 2010;31(11):3016–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw B-S, Zhao L. Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics. 2018;8(12):3284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S. Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. Materials. 2020;13(20):4644.

    Article  CAS  PubMed Central  Google Scholar 

  27. Mirrahimi M, Beik J, Mirrahimi M, Alamzadeh Z, Teymouri S, Mahabadi VP, Shakeri-Zadeh A. Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. Int J Biol Macromol. 2020;158:617–26.

    Article  CAS  PubMed  Google Scholar 

  28. Mirrahimi M, Hosseini V, Kamrava SK, Attaran N, Beik J, Kooranifar S, Shakeri-Zadeh A. Selective heat generation in cancer cells using a combination of 808 nm laser irradiation and the folate-conjugated Fe2O3@ Au nanocomplex. Artificial Cells, Nanomedicine, Biotechnology. 2018;46(sup1):241–53.

    Article  CAS  PubMed  Google Scholar 

  29. Rahdar A, Taboada P, Aliahmad M, Hajinezhad MR, Sadeghfar F. Iron oxide nanoparticles: Synthesis, physical characterization, and intraperitoneal biochemical studies in Rattus norvegicus. J Mol Struct. 2018;1173:240–5.

    Article  CAS  Google Scholar 

  30. Cao Y, Gong Y, Liu L, Zhou Y, Fang X, Zhang C, Li J. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol. 2017;37(12):1359–69.

    Article  CAS  PubMed  Google Scholar 

  31. Wu X, Tan Y, Mao H, Zhang M. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomed. 2010;5:385.

    Article  CAS  Google Scholar 

  32. Wang, Y. (2011). Isolation and Culture of Human Umbilical Vein Endothelial Cells. The Placenta, 163–169.

  33. Duan J, Du J, Jin R, Zhu W, Liu L, Yang L, Anderson JM. Iron oxide nanoparticles promote vascular endothelial cells survival from oxidative stress by enhancement of autophagy. Regenerative biomaterials. 2019;6(4):221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Z, Xia X, Lv X, Song E, Song Y. Iron-bearing nanoparticles trigger human umbilical vein endothelial cells ferroptotic responses by promoting intracellular iron level. Environ Pollut. 2021;287:117345.

    Article  CAS  PubMed  Google Scholar 

  35. Hosseini V, Mirrahimi M, Shakeri-Zadeh A, Koosha F, Ghalandari B, Maleki S, Kamrava SK. Multimodal cancer cell therapy using Au@ Fe2O3 core–shell nanoparticles in combination with photo-thermo-radiotherapy. Photodiagnosis Photodynamic Therapy. 2018;24:129–35.

    Article  CAS  PubMed  Google Scholar 

  36. Vinken, M., & Rogiers, V. (2015). Protocols in in-vitro hepatocyte research: Springer.

  37. Khramtsov P, Kalashnikova T, Bochkova M, Kropaneva M, Timganova V, Zamorina S, Rayev M. Measuring the concentration of protein nanoparticles synthesized by desolvation method: Comparison of Bradford assay, BCA assay, hydrolysis/UV spectroscopy and gravimetric analysis. Int J Pharmaceutics. 2021;599:120422.

    Article  CAS  Google Scholar 

  38. Potter, T. M., Neun, B. W., & Stern, S. T. (2011). Assay to detect lipid peroxidation upon exposure to nanoparticles. In Characterization of Nanoparticles Intended for Drug Delivery (pp. 181–189): Springer.

  39. Mbeh D, França R, Merhi Y, Zhang X, Veres T, Sacher E, Yahia L. In vitro biocompatibility assessment of functionalized magnetite nanoparticles: Biological and cytotoxicological effects. J Biomed Mater Res, Part A. 2012;100(6):1637–46.

    Article  CAS  Google Scholar 

  40. Tovmasyan A, Reboucas JS, Benov L. Simple biological systems for assessing the activity of superoxide dismutase mimics. Antioxidants Redox Signaling. 2014;20(15):2416–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grilo LF, Martins JD, Cavallaro CH, Nathanielsz PW, Oliveira PJ, Pereira SP. Development of a 96-well based assay for kinetic determination of catalase enzymatic-activity in biological samples. Toxicol In Vitro. 2020;69:104996.

    Article  CAS  PubMed  Google Scholar 

  42. Ali M, Kim YS, Khalid MAU, Soomro AM, Lee J-W, Lim J-H, Ho LS. On-chip real-time detection and quantification of reactive oxygen species in MCF-7 cells through an in-house built fluorescence microscope. Microelectron Eng. 2020;233:111432.

    Article  CAS  Google Scholar 

  43. Carnol L, Schummer C, Moris G. Quantification of six phthalates and one adipate in Luxembourgish beer using HS-SPME-GC/MS. Food Anal Methods. 2017;10(2):298–309.

    Article  Google Scholar 

  44. Swift LH, Golsteyn RM. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci. 2014;15(3):3403–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang X, Okafuji M, Traganos F, Luther E, Holden E, Darzynkiewicz Z. Assessment of histone H2AX phosphorylation induced by DNA topoisomerase I and II inhibitors topotecan and mitoxantrone and by the DNA cross-linking agent cisplatin. Cytometry A. 2004;58(2):99–110.

    Article  PubMed  CAS  Google Scholar 

  46. Sargazi S, Moudi M, Kooshkaki O, Mirinejad S, Saravani R. Hydro-alcoholic extract of Achillea Wilhelmsii C Koch reduces the expression of cell death-associated genes while inducing DNA damage in HeLa cervical cancer cells. Iranian J Med Sci. 2020;45(5):359.

    Google Scholar 

  47. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lin W, Xu Y, Huang C-C, Ma Y, Shannon KB, Chen D-R, Huang Y-W. Toxicity of nano-and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res. 2009;11(1):25–39.

    Article  CAS  Google Scholar 

  49. Arshad R, Barani M, Rahdar A, Sargazi S, Cucchiarini M, Pandey S, Kang M. Multi-Functionalized Nanomaterials and Nanoparticles for Diagnosis and Treatment of Retinoblastoma. Biosensors. 2021;11(4):97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barani M, Mukhtar M, Rahdar A, Sargazi G, Thysiadou A, Kyzas GZ. Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections. Molecules. 2021;26(1):186.

    Article  CAS  PubMed Central  Google Scholar 

  51. Chien L-Y, Hsiao J-K, Hsu S-C, Yao M, Lu C-W, Liu H-M, Huang D-M. In vivo magnetic resonance imaging of cell tropsim, trafficking mechanism, and therapeutic impact of human mesenchymal stem cells in a murine glioma model. Biomaterials. 2011;32(12):3275–84.

    Article  CAS  PubMed  Google Scholar 

  52. Rahdar A, Hajinezhad MR, Bilal M, Askari F, Kyzas GZ. Behavioral effects of zinc oxide nanoparticles on the brain of rats. Inorg Chem Commun. 2020;119:108131.

    Article  CAS  Google Scholar 

  53. Huang D-M, Hsiao J-K, Chen Y-C, Chien L-Y, Yao M, Chen Y-K, Cheng H-Y. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials. 2009;30(22):3645–51.

    Article  CAS  PubMed  Google Scholar 

  54. Albanese A, Chan WC. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano. 2011;5(7):5478–89.

    Article  CAS  PubMed  Google Scholar 

  55. BarathManiKanth S, Kalishwaralal K, Sriram M, Pandian SRK, Youn H-S, Eom S, Gurunathan S. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol. 2010;8(1):1–15.

    Article  CAS  Google Scholar 

  56. Bae J-E, Huh M-I, Ryu B-K, Do J-Y, Jin S-U, Moon M-J, Chi S-G. The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles. Biomaterials. 2011;32(35):9401–14.

    Article  CAS  PubMed  Google Scholar 

  57. Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann B, Thiron T, Parak WJ. Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano. 2012;6(7):5767–83.

    Article  CAS  PubMed  Google Scholar 

  58. Gong M, Yang H, Zhang S, Yang Y, Zhang D, Qi Y, Zou L. Superparamagnetic core/shell GoldMag nanoparticles: size-, concentration-and time-dependent cellular nanotoxicity on human umbilical vein endothelial cells and the suitable conditions for magnetic resonance imaging. J Nanobiotechnol. 2015;13(1):1–16.

    Article  CAS  Google Scholar 

  59. Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, Wang PC. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6(5):4483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3(3):145–50.

    Article  CAS  PubMed  Google Scholar 

  61. Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, Liang X-J. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano. 2011;5(11):8629–39.

    Article  CAS  PubMed  Google Scholar 

  62. Abdelhalim MAK, Moussa SAA, Qaid HAY. The protective role of quercetin and arginine on gold nanoparticles induced hepatotoxicity in rats. Int J Nanomed. 2018;13:2821.

    Article  CAS  Google Scholar 

  63. Abdelhalim MAK, Qaid HA, Al-Mohy Y, Al-Ayed MS. Effects of quercetin and arginine on the nephrotoxicity and lipid peroxidation induced by gold nanoparticles in vivo. Int J Nanomed. 2018;13:7765.

    Article  CAS  Google Scholar 

  64. Akhtar MJ, Ahamed M, Alhadlaq H. Gadolinium oxide nanoparticles induce toxicity in human endothelial HUVECs via lipid peroxidation, mitochondrial dysfunction and autophagy modulation. Nanomaterials. 2020;10(9):1675.

    Article  CAS  PubMed Central  Google Scholar 

  65. Lin W, Huang Y-W, Zhou X-D, Ma Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol. 2006;217(3):252–9.

    Article  CAS  PubMed  Google Scholar 

  66. Pudlarz AM, Ranoszek-Soliwoda K, Czechowska E, Tomaszewska E, Celichowski G, Grobelny J, Szemraj J. A study of the activity of recombinant Mn-superoxide dismutase in the presence of gold and silver nanoparticles. Applied biochemistry biotechnology. 2019;187(4):1551–68.

    Article  CAS  PubMed  Google Scholar 

  67. Hong JE, Santucci LA, Tian X, Silverman DJ. Superoxide dismutase-dependent, catalase-sensitive peroxides in human endothelial cells infected by Rickettsia rickettsii. Infection Immunity. 1998;66(4):1293–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weydert CJ, Waugh TA, Ritchie JM, Iyer KS, Smith JL, Li L, Oberley LW. Overexpression of manganese or copper–zinc superoxide dismutase inhibits breast cancer growth. Free Radical Biology Medicine. 2006;41(2):226–37.

    Article  CAS  PubMed  Google Scholar 

  69. Lou-Franco J, Das B, Elliott C, Cao C. Gold nanozymes: from concept to biomedical applications. Nano-Micro Letters. 2021;13(1):1–36.

    Article  CAS  Google Scholar 

  70. He W, Zhou Y-T, Wamer WG, Hu X, Wu X, Zheng Z, Yin J-J. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials. 2013;34(3):765–73.

    Article  CAS  PubMed  Google Scholar 

  71. Dashtestani F, Ghourchian H, Najafi A. Silver-gold-apoferritin nanozyme for suppressing oxidative stress during cryopreservation. Materials Science Engineering: C. 2019;94:831–40.

    Article  CAS  Google Scholar 

  72. Alarifi S, Ali D, Alakhtani S, Al Suhaibani ES, Al-Qahtani AA. Reactive oxygen species-mediated DNA damage and apoptosis in human skin epidermal cells after exposure to nickel nanoparticles. Biol Trace Elem Res. 2014;157(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  73. Wen T, Yang A, Piao L, Hao S, Du L, Meng J, Xu H. Comparative study of in vitro effects of different nanoparticles at non-cytotoxic concentration on the adherens junction of human vascular endothelial cells. Int J Nanomed. 2019;14:4475.

    Article  CAS  Google Scholar 

  74. Li JJ, Hartono D, Ong C-N, Bay B-H, Yung L-YL. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials. 2010;31(23):5996–6003.

    Article  CAS  PubMed  Google Scholar 

  75. Love SA, Thompson JW, Haynes CL. Development of screening assays for nanoparticle toxicity assessment in human blood: preliminary studies with charged Au nanoparticles. Nanomedicine. 2012;7(9):1355–64.

    Article  CAS  PubMed  Google Scholar 

  76. Ivashkevich A, Redon CE, Nakamura AJ, Martin RF, Martin OA. Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 2012;327(1–2):123–33.

    Article  CAS  PubMed  Google Scholar 

  77. Kuo LJ, Yang L-X. γ-H2AX-a novel biomarker for DNA double-strand breaks. In Vivo. 2008;22(3):305–9.

    CAS  PubMed  Google Scholar 

  78. Coradeghini R, Gioria S, García CP, Nativo P, Franchini F, Gilliland D, Rossi F. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett. 2013;217(3):205–16.

    Article  CAS  PubMed  Google Scholar 

  79. Chen Y-S, Hung Y-C, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4(8):858–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guo J, Rahme K, He Y, Li L-L, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomed. 2017;12:6131.

    Article  CAS  Google Scholar 

  81. Khlebtsov N, Bogatyrev V, Dykman L, Khlebtsov B, Staroverov S, Shirokov A, Tsyganova N. Analytical and theranostic applications of gold nanoparticles and multifunctional nanocomposites. Theranostics. 2013;3(3):167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen J, Wang H, Long W, Shen X, Wu D, Song S-S, Fan F. Sex differences in the toxicity of polyethylene glycol-coated gold nanoparticles in mice. Int J Nanomed. 2013;8:2409.

    Google Scholar 

Download references

Acknowledgements

This study was conducted under supervision and financial support of Zahedan University of Medical Sciences

Funding

This study was conducted under supervision and financial support of Zahedan University of Medical Sciences (IR.ZAUMS.REC.1399.135).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in different parts of the original study. MS, RS, MRH and SS wrote the main manuscript text. RS, MRH, SS, SS, OS, and SS conducted the different tests. KS, RS, ZN, MS, and RS edited the final draft.

Corresponding authors

Correspondence to Roghayeh Sheervalilou or Saman Sargazi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

Webpage of ethical approval code is: https://ethics.research.ac.ir/EthicsProposalView.php?id=143830

Consent for publication

All authors are agreed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaznavi, H., Hajinezhad, M.R., Shirvaliloo, M. et al. Effects of folate-conjugated Fe2O3@Au core–shell nanoparticles on oxidative stress markers, DNA damage, and histopathological characteristics: evidence from in vitro and in vivo studies. Med Oncol 39, 122 (2022). https://doi.org/10.1007/s12032-022-01713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01713-z

Keywords

Navigation